当前位置: 首页 > 详情页

SEEG-Net: An explainable and deep learning-based cross-subject pathological activity detection method for drug-resistant epilepsy

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing, 100876, China [2]Department of Neurosurgery, Xuan Wu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing, 100053, China
出处:
ISSN:

关键词: Drug-resistant epilepsy SEEG Deep learning Pathological activity detection Signal processing

摘要:
Precise preoperative evaluation of drug-resistant epilepsy (DRE) requires accurate analysis of invasive stereoelectroencephalography (SEEG). With the tremendous breakthrough of Artificial intelligence (AI), previous studies can help clinical experts to identify pathological activities automatically. However, they still face limitations when applied in real-world clinical DRE scenarios, such as sample imbalance, cross-subject domain shift, and poor interpretability. Our objective is to propose a model that can address the above problems and realizes high-sensitivity SEEG pathological activity detection based on two real clinical datasets.Our proposed innovative and effective SEEG-Net introduces a multiscale convolutional neural network (MSCNN) to increase the receptive field of the model, and to learn SEEG multiple frequency domain features, local and global features. Moreover, we designed a novel focal domain generalization loss (FDG-loss) function to enhance the target sample weight and to learn domain consistency features. Furthermore, to enhance the interpretability and flexibility of SEEG-Net, we explain SEEG-Net from multiple perspectives, such as significantly different features, interpretable models, and model learning process interpretation by Grad-CAM++.The performance of our proposed method is verified on a public benchmark multicenter SEEG dataset and a private clinical SEEG dataset for a robust comparison. The experimental results demonstrate that the SEEG-Net model achieves the highest sensitivity and is state-of-the-art on cross-subject (for different patients) evaluation, and well deal with the known problems. Besides, we provide an SEEG processing and database construction flow, by maintaining consistency with the real-world clinical scenarios.According to the results, SEEG-Net is constructed to increase the sensitivity of SEEG pathological activity detection. Simultaneously, we settled certain problems about AI assistance in clinical DRE, built a bridge between AI algorithm application and clinical practice.Copyright © 2022 The Author(s). Published by Elsevier Ltd.. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 工程技术
小类 | 2 区 生物学 2 区 数学与计算生物学 3 区 计算机:跨学科应用 3 区 工程:生物医学
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 生物学 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 工程:生物医学
JCR分区:
出版当年[2020]版:
Q1 BIOLOGY Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 BIOLOGY Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, No. 10 Xitucheng Road, Haidian District, Beijing, 100876, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院