当前位置: 首页 > 详情页

Tetrahydroxy stilbene glucoside alters neurogenesis and neuroinflammation to ameliorate radiation-associated cognitive disability via AMPK/Tet2

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China [2]School of Chinese Medicine, Capital Medical University, Beijing 100069, China [3]Department of China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA (People 's Liberation Army) General Hospital, Beijing 100039, China
出处:
ISSN:

摘要:
Along with the extensive application of radiation in medical, military and other fields, human beings carry a greater risk of exposure to radiation environment that causes a range of physical injure, particularly to the brain in cognition. However, the radiation-associated cognitive disability is poorly understood and there is no effective prevention or long-term treatment. Here, we demonstrate that neurogenesis and neuroinflammation disorder are primarily involved in the pathophysiological basis of irradiation-induced cognitive decline. Furthermore, we discovered that tetrahydroxy stilbene glucoside (TSG), a natural active ingredient from Heshouwu that has been well known for its unique anti-aging effect as the Chinese herb, can be a promising mitigator to improve learning-memory ability by facilitating the neurogenesis in the proliferation and differentiation of the surviving neural progenitor cells via AMPK/Tet2, and attenuating the neuroinflammation in the microglial NLRP3 inflammasomes activation via AMPK in vivo. Additionally, TSG was also revealed to activate AMPK by molecular docking and kinase enzyme system assay in vitro. Taken together, our findings identify TSG, as the AMPK activator, prevents radiation-induced cognitive dysfunction by regulating neurogenesis and neuroinflammation via AMPK/Tet2 in rodents, and represents a very promising candidate for developing drugs that can be used for radiation-associated brain injury.Copyright © 2022. Published by Elsevier B.V.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 医学
小类 | 2 区 药学 3 区 免疫学
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 免疫学 2 区 药学
JCR分区:
出版当年[2020]版:
Q2 IMMUNOLOGY Q2 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q1 PHARMACOLOGY & PHARMACY Q2 IMMUNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院