当前位置: 首页 > 详情页

Biological small-calibre tissue engineered blood vessels developed by electrospinning and in-body tissue architecture

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China [2]Department of Cardiovascular Surgery, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, 100045 Beijing, China
出处:
ISSN:

摘要:
There are no suitable methods to develop the small-calibre tissue-engineered blood vessels (TEBVs) that can be widely used in the clinic. In this study, we developed a new method that combines electrospinning and in-body tissue architecture(iBTA) to develop small-calibre TEBVs. Electrospinning imparted mechanical properties to the TEBVs, and the iBTA imparted biological properties to the TEBVs. The hybrid fibres of PLCL (poly(L-lactic-co-ε-caprolactone) and PU (Polyurethane) were obtained by electrospinning, and the fibre scaffolds were then implanted subcutaneously in the abdominal area of the rabbit (as an in vivo bioreactor). The biotubes were harvested after four weeks. The mechanical properties of the biotubes were most similar to those of the native rabbit aorta. Biotubes and the PLCL/PU vascular scaffolds were implanted into the rabbit carotid artery. The biotube exhibited a better patency rate and certain remodelling ability in the rabbit model, which indicated the potential use of this hybridization method to develop small-calibre TEBVs. Sketch map of developing the biotube. The vascular scaffolds were prepared by electrospinning (A). Silicone tube was used as the core, and the vascular scaffold was used as the shell (B). The vascular scaffold and silicone tube were implanted subcutaneously in the abdominal area of the rabbit (C). The biotube was extruded from the silicone tube after 4 weeks ofembedding (D). The biotube was implanted for the rabbit carotid artery (E).© 2022. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 工程技术
小类 | 3 区 工程:生物医学 3 区 材料科学:生物材料
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学 4 区 材料科学:生物材料
JCR分区:
出版当年[2020]版:
Q2 ENGINEERING, BIOMEDICAL Q3 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL Q2 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Vascular Surgery Department, Xuanwu Hospital, Capital Medical University, 100053 Beijing, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院