当前位置: 首页 > 详情页

Annotation-free glioma grading from pathological images using ensemble deep learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Sch Basic Med Sci, Dept Neurobiol, Beijing Key Lab Neural Regenerat & Repair, Beijing 100069, Peoples R China [2]Peking Univ, Acad Adv Interdisciplinary Studies, Peking Tsinghua Ctr Life Sci, Beijing 100871, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Dept Neurosurg, Beijing 100053, Peoples R China [4]Capital Med Univ, Xuanwu Hosp, Neurosurg Dept, Cell & Mol Biol Lab, Beijing 100053, Peoples R China [5]CHINA INI Sci & Technol Innovat Lab, Beijing 100053, Peoples R China [6]Natl Clin Res Ctr Geriatr Dis, Beijing 100053, Peoples R China [7]Xinxiang Med Univ, Sch Basic Med Sci, Henan Key Lab Med Tissue Regenerat, Xinxiang 453003, Henan, Peoples R China [8]Capital Med Univ, Xuanwu Hosp, Dept Pathol, Beijing 100053, Peoples R China [9]Peking Univ, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China [10]Beihang Univ, Sch Mech Engn & Automat, Beijing 100191, Peoples R China
出处:

关键词: Glioma grading Deep learning Ensemble learning Pathology

摘要:
Glioma grading is critical for treatment selection, and the fine classification between glioma grades II and III is still a pathological challenge. Traditional systems based on a single deep learning (DL) model can only show relatively low accuracy in distinguishing glioma grades II and III. Introducing ensemble DL models by combining DL and ensemble learning techniques, we achieved annotation-free glioma grading (grade II or III) from pathological images. We estab-lished multiple tile-level DL models using residual network ResNet-18 architecture and then used DL models as component classifiers to develop ensemble DL models to achieve patient-level glioma grading. Whole-slide images of 507 subjects with low-grade glioma (LGG) from the Cancer Genome Atlas (TCGA) were included. The 30 DL models exhibited an average area under the curve (AUC) of 0.7991 in patient-level glioma grading. Single DL models showed large variation, and the median between-model cosine similarity was 0.9524, significantly smaller than the threshold of 1.0. The ensemble model based on logistic regression (LR) methods with a 14-component DL classifier (LR-14) demonstrated a mean patient-level accuracy and AUC of 0.8011 and 0.8945, respectively. Our proposed LR-14 ensemble DL model achieved state-of-the-art performance in glioma grade II and III classifications based on unannotated pathological images.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 4 区 综合性期刊
小类 | 4 区 综合性期刊
最新[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2021]版:
Q2 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Capital Med Univ, Sch Basic Med Sci, Dept Neurobiol, Beijing Key Lab Neural Regenerat & Repair, Beijing 100069, Peoples R China [2]Peking Univ, Acad Adv Interdisciplinary Studies, Peking Tsinghua Ctr Life Sci, Beijing 100871, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [3]Capital Med Univ, Xuanwu Hosp, Dept Neurosurg, Beijing 100053, Peoples R China [4]Capital Med Univ, Xuanwu Hosp, Neurosurg Dept, Cell & Mol Biol Lab, Beijing 100053, Peoples R China [5]CHINA INI Sci & Technol Innovat Lab, Beijing 100053, Peoples R China [*1]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院