当前位置: 首页 > 详情页

Causal effects of COVID-19 on structural changes in specific brain regions: a Mendelian randomization study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, 45 Changchun Street, Beijing 100053, China [2]Neurodegenerative Laboratory of Ministry of Education of the Peoples Republic of China, Beijing, China.
出处:
ISSN:

关键词: COVID-19 Brain structure Mendelian randomization Causality

摘要:
Previous studies have found a correlation between coronavirus disease 2019 (COVID-19) and changes in brain structure and cognitive function, but it remains unclear whether COVID-19 causes brain structural changes and which specific brain regions are affected. Herein, we conducted a Mendelian randomization (MR) study to investigate this causal relationship and to identify specific brain regions vulnerable to COVID-19.Genome-wide association study (GWAS) data for COVID-19 phenotypes (28,900 COVID-19 cases and 3,251,161 controls) were selected as exposures, and GWAS data for brain structural traits (cortical thickness and surface area from 51,665 participants and volume of subcortical structures from 30,717 participants) were selected as outcomes. Inverse-variance weighted method was used as the main estimate method. The weighted median, MR-Egger, MR-PRESSO global test, and Cochran's Q statistic were used to detect heterogeneity and pleiotropy.The genetically predicted COVID-19 infection phenotype was nominally associated with reduced cortical thickness in the caudal middle frontal gyrus (β = - 0.0044, p = 0.0412). The hospitalized COVID-19 phenotype was nominally associated with reduced cortical thickness in the lateral orbitofrontal gyrus (β = - 0.0049, p = 0.0328) and rostral middle frontal gyrus (β = - 0.0022, p = 0.0032) as well as with reduced cortical surface area of the middle temporal gyrus (β = - 10.8855, p = 0.0266). These causal relationships were also identified in the severe COVID-19 phenotype. Additionally, the severe COVID-19 phenotype was nominally associated with reduced cortical thickness in the cuneus (β = - 0.0024, p = 0.0168); reduced cortical surface area of the pericalcarine (β = - 2.6628, p = 0.0492), superior parietal gyrus (β = - 5.6310, p = 0.0408), and parahippocampal gyrus (β = - 0.1473, p = 0.0297); and reduced volume in the hippocampus (β = - 15.9130, p = 0.0024).Our study indicates a suggestively significant association between genetic predisposition to COVID-19 and atrophy in specific functional regions of the human brain. Patients with COVID-19 and cognitive impairment should be actively managed to alleviate neurocognitive symptoms and minimize long-term effects.© 2023. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 医学
小类 | 1 区 医学:内科
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 医学:内科
JCR分区:
出版当年[2021]版:
Q1 MEDICINE, GENERAL & INTERNAL
最新[2023]版:
Q1 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, 45 Changchun Street, Beijing 100053, China
共同第一作者:
通讯作者:
通讯机构: [1]Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, 45 Changchun Street, Beijing 100053, China [2]Neurodegenerative Laboratory of Ministry of Education of the Peoples Republic of China, Beijing, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17000 今日访问量:0 总访问量:905 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院