当前位置: 首页 > 详情页

Short-term effect of particulate matter on lung function and impulse oscillometry system (IOS) parameters of chronic obstructive pulmonary disease (COPD) in Beijing, China

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of pulmonary and critical care medicine, Xuanwu Hospital, Capital Medical University, Beijing, China [2]Department of pulmonary and critical care medicine, Tong Ren Hospital, Capital Medical University, Beijing, China [3]Department of pulmonary and critical care medicine, Daxing District People’s Hospital, Beijing, China [4]Respiratory department, Fuxing Hospital, Capital Medical University, Beijing, China
出处:
ISSN:

摘要:
This study aimed to evaluate the associations between particulate matter (PM), lung function and Impulse Oscillometry System (IOS) parameters in chronic obstructive pulmonary disease (COPD) patients and identity effects between different regions in Beijing, China.In this retrospective study, we recruited 1348 outpatients who visited hospitals between January 2016 and December 2019. Ambient air pollutant data were obtained from the central monitoring stations nearest the participants' residential addresses. We analyzed the effect of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) exposure on lung function and IOS parameters using a multiple linear regression model, adjusting for sex, smoking history, education level, age, body mass index (BMI), mean temperature, and relative humidity .The results showed a relationship between PM2.5, lung function and IOS parameters. An increase of 10 µg/m3 in PM2.5 was associated with a decline of 2.083% (95% CI: -3.047 to - 1.103) in forced expiratory volume in one second /predict (FEV1%pred), a decline of 193 ml/s (95% CI: -258 to - 43) in peak expiratory flow (PEF), a decline of 0.932% (95% CI: -1.518 to - 0.342) in maximal mid-expiratory flow (MMEF); an increase of 0.732 Hz (95% CI: 0.313 to 1.148) in resonant frequency (Fres), an increase of 36 kpa/(ml/s) (95% CI: 14 to 57) in impedance at 5 Hz (Z5) and an increase of 31 kpa/(ml/s) (95% CI: 2 to 54) in respiratory impedance at 5 Hz (R5). Compared to patients in the central district, those in the southern district had lower FEV1/FVC, FEV1%pred, PEF, FEF75%, MMEF, X5, and higher Fres, Z5 and R5 (p < 0.05).Short-term exposure to PM2.5 was associated with reductions in lung function indices and an increase in IOS results in patients with COPD. The heavier the PM2.5, the more severe of COPD.© 2023. The Author(s).

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 公共卫生、环境卫生与职业卫生
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 公共卫生、环境卫生与职业卫生
JCR分区:
出版当年[2021]版:
Q2 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
最新[2023]版:
Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of pulmonary and critical care medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院