当前位置: 首页 > 详情页

Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 自然指数

机构: [1]Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. [2]Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. [3]University of Chinese Academy of Sciences, Beijing, China. [4]Department of Pathology, Xuanwu Hospital, Capital Medical University, Beijing, China. [5]Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. [6]Department of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou, Henan, China. [7]Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. [8]The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China. [9]National Innovation Center for Advanced Medical Devices, Shenzhen, China. [10]National InnovationCenter for AdvancedMedical Devices, Shenzhen,China.
出处:
ISSN:

摘要:
Current diagnosis of glioma types requires combining both histological features and molecular characteristics, which is an expensive and time-consuming procedure. Determining the tumor types directly from whole-slide images (WSIs) is of great value for glioma diagnosis. This study presents an integrated diagnosis model for automatic classification of diffuse gliomas from annotation-free standard WSIs. Our model is developed on a training cohort (n = 1362) and a validation cohort (n = 340), and tested on an internal testing cohort (n = 289) and two external cohorts (n = 305 and 328, respectively). The model can learn imaging features containing both pathological morphology and underlying biological clues to achieve the integrated diagnosis. Our model achieves high performance with area under receiver operator curve all above 0.90 in classifying major tumor types, in identifying tumor grades within type, and especially in distinguishing tumor genotypes with shared histological features. This integrated diagnosis model has the potential to be used in clinical scenarios for automated and unbiased classification of adult-type diffuse gliomas.© 2023. Springer Nature Limited.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
最新[2023]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
JCR分区:
出版当年[2021]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
共同第一作者:
通讯作者:
通讯机构: [2]Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China. [3]University of Chinese Academy of Sciences, Beijing, China. [8]The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China. [10]National InnovationCenter for AdvancedMedical Devices, Shenzhen,China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院