当前位置: 首页 > 详情页

U-Net deep learning model for endoscopic diagnosis of chronic atrophic gastritis and operative link for gastritis assessment staging: a prospective nested case-control study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Xuanwu Hosp, Dept Gastroenterol, 45 Chang Chun St, Beijing 100053, Peoples R China [2]China Acad Chinese Med Sci, Guanganmen Hosp, Dept Anesthesiol, 5 North Court St, Beijing 100053, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Dept Gastroenterol, Beijing, Peoples R China
出处:
ISSN:

关键词: artificial intelligence chronic atrophic gastritis deep learning gastroscopy operative link for gastritis assessment U-Net

摘要:
Background: The operative link for the gastritis assessment (OLGA) system can objectively reflect the stratification of gastric cancer risk in patients with chronic atrophic gastritis (CAG).Objectives: We developed a real-time video monitoring model for the endoscopic diagnosis of CAG and OLGA staging based on U-Net deep learning (DL). To further validate and improve its performance, we designed a study to evaluate the diagnostic evaluation indices.Design: A prospective nested case-control studyMethods: Our cohort consisted of 1306 patients from 31 July 2021 to 31 January 2022. According to the pathological results, patients in the cohort were divided into the CAG group and the chronic non-atrophic gastritis group to evaluate the diagnostic evaluation indices. Each atrophy lesion was automatically labeled and the atrophy severity was assessed by the model. Propensity score matching was used to minimize selection bias.Results: The diagnostic evaluation indices and the consistency between OLGA staging and pathological diagnosis of the model were superior to those of endoscopists [sensitivity (89.31% versus 67.56%), specificity (90.46% versus 70.23%), positive predictive value (90.35% versus 69.41%), negative predictive value (89.43% versus 68.40%), accuracy rate (89.89% versus 68.89%), Youden index (79.77% versus 37.79%), odd product (79.23 versus 4.91), positive likelihood ratio (9.36 versus 2.27), negative likelihood ratio (0.12 versus 0.46)], areas under the curves (AUC) (95% CI) (0.919 (0.893-0.945) versus 0.749 (0.707-0.792), p < 0.001) and kappa (0.816 versus 0.291)].Conclusion: Our study demonstrated that the DL model can assist endoscopists in real-time diagnosis of CAG during gastroscopy and synchronous identification of high-risk OLGA stage (OLGA stages III and IV) patients.Trial registration: ChiCTR2100044458.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 3 区 胃肠肝病学
最新[2023]版:
大类 | 3 区 医学
小类 | 4 区 胃肠肝病学
JCR分区:
出版当年[2021]版:
Q2 GASTROENTEROLOGY & HEPATOLOGY
最新[2023]版:
Q1 GASTROENTEROLOGY & HEPATOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [3]Capital Med Univ, Xuanwu Hosp, Dept Gastroenterol, Beijing, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院