当前位置: 首页 > 详情页

CASMatching strategy for automated detection and quantification of carotid artery stenosis based on digital subtraction angiography

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Computer, School of Computer and Comumunication Engineering, University of Science and Technology Beijing (USTB), Beijing, China [2]Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of AI and Information Processing (Hechi University), Hechi, Guangxi 546300, China [3]Bejjing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China [4]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Bejing, China [5]China Intermnational Neuroscience Institute (China IN), Beijing, China [6]Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: Carotid artery stenosis Digital subtraction angiography Deep learning Object detection Visual regression

摘要:
Automated detection and quantification of carotid artery stenosis is a crucial task in establishing a computer-aided diagnostic system for brain diseases. Digital subtraction angiography (DSA) is known as the "gold standard" for carotid stenosis diagnosis. It is commonly used to identify carotid artery stenosis and measure morphological indices of the stenosis. However, using deep learning to detect stenosis based on DSA images and further quantitatively predicting the morphological indices remain a challenge due the absence of prior work. In this paper, we propose a quantitative method for predicting morphological indices of carotid stenosis.Our method adopts a two-stage pipeline, first locating regions suitable for predicting morphological indices by object detection model, and then using a regression model to predict indices. A novel Carotid Artery Stenosis Matching (CASMatching) strategy is introduced into the object detection to model the matching relationship between a stenosis and multiple normal vessel segments. The proposed Match-ness branch predicts a Match-ness score for each normal vessel segment to indicate the degree of matching to the stenosis. A novel Direction Distance-IoU (2DIoU) loss based on the Distance-IoU loss is proposed to make the model focused more on the bounding box regression in the direction of vessel extension. After detection, the normal vessel segment with the highest Match-ness score and the stenosis are intercepted from the original image, then fed into a regression model to predict morphological indices and calculate the degree of stenosis.Our method is trained and evaluated on a dataset collected from three different manufacturers' monoplane X-ray systems. The results show that the proposed components in the object detector substantially improve the detection performance of normal vascular segments. For the prediction of morphological indices, our model achieves Mean Absolute Error of 0.378, 0.221, 4.9 on reference vessel diameter (RVD), minimum lumen diameter (MLD) and stenosis degree.Our method can precisely localize the carotid stenosis and the normal vessel segment suitable for predicting RVD of the stenosis, and further achieve accurate quantification, providing a novel solution for the quantification of carotid artery stenosis.Copyright © 2023 Elsevier B.V. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 2 区 计算机:跨学科应用 2 区 计算机:理论方法 2 区 工程:生物医学 2 区 医学:信息
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 计算机:跨学科应用 2 区 计算机:理论方法 2 区 工程:生物医学 2 区 医学:信息
JCR分区:
出版当年[2022]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, THEORY & METHODS Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, THEORY & METHODS Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Computer, School of Computer and Comumunication Engineering, University of Science and Technology Beijing (USTB), Beijing, China [3]Bejjing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院