当前位置: 首页 > 详情页

Machine learning in Alzheimer's disease drug discovery and target identification

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China [2]Neurodegenerative Laboratory of Ministry of Education of the People’s Republic of China, Beijing, China
出处:
ISSN:

关键词: Alzheimer’s disease drug discovery drug design machine learning target identification

摘要:
Alzheimer's disease (AD) stands as a formidable neurodegenerative ailment that poses a substantial threat to the elderly population, with no known curative or disease-slowing drugs in existence. Among the vital and time-consuming stages in the drug discovery process, disease modeling and target identification hold particular significance. Disease modeling allows for a deeper comprehension of disease progression mechanisms and potential therapeutic avenues. On the other hand, target identification serves as the foundational step in drug development, exerting a profound influence on all subsequent phases and ultimately determining the success rate of drug development endeavors. Machine learning (ML) techniques have ushered in transformative breakthroughs in the realm of target discovery. Leveraging the strengths of large dataset analysis, multifaceted data processing, and the exploration of intricate biological mechanisms, ML has become instrumental in the quest for effective AD treatments. In this comprehensive review, we offer an account of how ML methodologies are being deployed in the pursuit of drug discovery for AD. Furthermore, we provide an overview of the utilization of ML in uncovering potential intervention strategies and prospective therapeutic targets for AD. Finally, we discuss the principal challenges and limitations currently faced by these approaches. We also explore the avenues for future research that hold promise in addressing these challenges.Copyright © 2023 Elsevier B.V. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版
大类 | 1 区 医学
小类 | 1 区 老年医学 2 区 细胞生物学
最新[2023]版
大类 | 1 区 医学
小类 | 1 区 老年医学 2 区 细胞生物学
JCR分区:
出版当年[2022]版:
Q1 CELL BIOLOGY Q1 GERIATRICS & GERONTOLOGY
最新[2023]版:
Q1 CELL BIOLOGY Q1 GERIATRICS & GERONTOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing, China
通讯机构: [*1]Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, 45 Changchun Street, Beijing 100053, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院