当前位置: 首页 > 详情页

The miR-25802/KLF4/NF-κB signaling axis regulates microglia-mediated neuroinflammation in Alzheimer's disease

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China. [2]Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing 100053, PR China.
出处:
ISSN:

关键词: Alzheimer’s disease Krüppel-like factor 4 Microglia microRNA-25802 Neuroinflammation

摘要:
Microglia-mediated neuroinflammation plays a critical role in the occurrence and progression of Alzheimer's disease (AD). In recent years, studies have increasingly explored microRNAs as biomarkers and treatment interventions for AD. This study identified a novel microRNA termed miR-25802 from our high-throughput sequencing dataset of an AD model and explored its role and the underlying mechanism. The results confirmed the miRNA properties of miR-25802 based on bioinformatics and experimental verification. Expression of miR-25802 was increased in the plasma of AD patients and in the hippocampus of APP/PS1 and 5 × FAD mice carrying two and five familial AD gene mutations. Functional studies suggested that overexpression or inhibition of miR-25802 respectively aggravated or ameliorated AD-related pathology, including cognitive disability, Aβ deposition, microglial pro-inflammatory phenotype activation, and neuroinflammation, in 5 × FAD mice and homeostatic or LPS/IFN-γ-stimulated EOC20 microglia. Mechanistically, miR-25802 negatively regulates KLF4 by directly binding to KLF4 mRNA, thus stimulating microglia polarization toward the pro-inflammatory M1 phenotype by promoting the NF-κB-mediated inflammatory response. The results also showed that inhibition of miR-25802 increased microglial anti-inflammatory M2 phenotype activity and suppressed NF-κB-mediated inflammatory reactions in the brains of 5 × FAD mice, while overexpression of miR-25802 exacerbated microglial pro-inflammatory M1 activity by enhancing NF-κB pathways. Of note, AD-associated manifestations induced by inhibition or overexpression of miR-25802 via the NF-κB signaling pathway were reversed by KLF4 silencing or upregulation. Collectively, these results provide the first evidence that miR-25802 is a regulator of microglial activity and establish the role of miR-25802/KLF4/NF-κB signaling in microglia-mediated neuroinflammation, suggesting potential therapeutic targets for AD.Copyright © 2024 Elsevier Inc. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 2 区 免疫学 2 区 神经科学 2 区 精神病学
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 免疫学 2 区 神经科学 2 区 精神病学
JCR分区:
出版当年[2022]版:
Q1 IMMUNOLOGY Q1 NEUROSCIENCES Q1 PSYCHIATRY
最新[2023]版:
Q1 IMMUNOLOGY Q1 NEUROSCIENCES Q1 PSYCHIATRY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院