当前位置: 首页 > 详情页

The Effects of Ketogenic Diet on Brain Gene Expressions in Type 2 Diabetes Background

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]The National Clinical Research Center for Geriatric Disease, Department of Neurology, Advanced Innovation Center for Human Brain Protection, Xuanwu Hospital, Capital Medical University, Beijing, China [2]Department of Endocrinology, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
出处:
ISSN:

关键词: ketogenic diet type 2 diabetes mellitus neurodegenerative diseases mRNA‐seq analysis energy metabolism

摘要:
Type 2 diabetes mellitus (T2DM) is a major risk factor of a number of neurodegenerative diseases (NDDs). Ketogenic diet (KD) has significant beneficial effects on glycemic control and may act effectively against NDDs, but the mechanism remains unclear. In this study, we aimed to investigate the potential effects of KD on gene expressions in the brains of T2DM model mice. Male db/db mice at the age of 9 weeks were fed with KD or normal diet to the age of 6 months, and the whole brains were subjected to mRNA-seq analysis for differentially expressed genes. KD significantly lowered fasting glucose and body weights in db/db mice (P < 0.05), and the expression of 189 genes in the brain were significantly changed (P < 0.05, |log2| > 1). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the differentially expressed genes upon KD are involved in inflammatory responses and the functions of biosynthesis. In inflammatory responses, NF-κB signaling pathway, viral protein interaction with cytokine and cytokine receptor, and cytokine-cytokine receptor interaction pathways were enriched, and in biosynthesis pathways, genes functioning in lipid and amino acid metabolism, protein synthesis, and energy metabolism were enriched. Moreover, consistent with the gene set enrichment analysis results, proteasomal activity measured biochemically were enhanced in KD-fed T2DM mice. These data may facilitate the understanding of how KD can be protective to the brain in T2DM background. KD could be a new strategy for the prevention of NDDs in T2DM patients.Copyright © 2024 IBRO. Published by Elsevier Inc. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 4 区 神经科学
最新[2023]版:
大类 | 3 区 医学
小类 | 4 区 神经科学
JCR分区:
出版当年[2022]版:
Q3 NEUROSCIENCES
最新[2023]版:
Q2 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]The National Clinical Research Center for Geriatric Disease, Department of Neurology, Advanced Innovation Center for Human Brain Protection, Xuanwu Hospital, Capital Medical University, Beijing, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院