当前位置: 首页 > 详情页

Integrating large-scale single-cell RNA sequencing in central nervous system disease using self-supervised contrastive learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Neurosurg, Beijing, Peoples R China [2]Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen, Guangdong, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Neurospine Ctr, China Int Neurosci Inst,Dept Neurosurg, Beijing, Peoples R China [4]Fujian Med Univ, Hosp 900, Fuzong Clin Med Coll, Dept Neurosurg, Fuzhou, Fujian, Peoples R China [5]Chinese Univ Hong Kong, Shenzhen Sch Med, Shenzhen, Guangdong, Peoples R China
出处:
ISSN:

摘要:
The central nervous system (CNS) comprises a diverse range of brain cell types with distinct functions and gene expression profiles. Although single-cell RNA sequencing (scRNA-seq) provides new insights into the brain cell atlases, integrating large-scale CNS scRNA-seq data still encounters challenges due to the complexity and heterogeneity among CNS cell types/subtypes. In this study, we introduce a self-supervised contrastive learning method, called scCM, for integrating large-scale CNS scRNA-seq data. scCM brings functionally related cells close together while simultaneously pushing apart dissimilar cells by comparing the variations of gene expression, effectively revealing the heterogeneous relationships within the CNS cell types/subtypes. The effectiveness of scCM is evaluated on 20 CNS datasets covering 4 species and 10 CNS diseases. Leveraging these strengths, we successfully integrate the collected human CNS datasets into a large-scale reference to annotate cell types and subtypes in neural tissues. Results demonstrate that scCM provides an accurate annotation, along with rich spatial information of cell state. In summary, scCM is a robust and promising method for integrating large-scale CNS scRNA-seq data, enabling researchers to gain insights into the cellular and molecular mechanisms underlying CNS functions and diseases. scCM, a self-supervised contrastive learning method, effectively integrates large-scale CNS scRNA-seq data by clustering functionally related cells and separating dissimilar ones.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 生物学
小类 | 1 区 生物学
最新[2023]版:
大类 | 1 区 生物学
小类 | 1 区 生物学
JCR分区:
出版当年[2022]版:
Q1 BIOLOGY
最新[2023]版:
Q1 BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Neurosurg, Beijing, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Chinese Acad Med Sci & Peking Union Med Coll, Peking Union Med Coll Hosp, Dept Neurosurg, Beijing, Peoples R China [5]Chinese Univ Hong Kong, Shenzhen Sch Med, Shenzhen, Guangdong, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院