当前位置: 首页 > 详情页

Key factors in epidemiological exposure and insights for environmental management: Evidence from meta-analysis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China [2]National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100084, China [3]Centre for Clinical and Epidemiologic Research, Beijing an Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, 100029, China
出处:
ISSN:

关键词: Air pollution Cause-specific mortality Chinese population Long- and short-term epidemiological studies Exposure assessment Exposure level

摘要:
In recent years, the precision of exposure assessment methods has been rapidly improved and more widely adopted in epidemiological studies. However, such methodological advancement has introduced additional heterogeneity among studies. The precision of exposure assessment has become a potential confounding factors in meta-analyses, whose impacts on effect calculation remain unclear. To explore, we conducted a meta-analysis to integrate the long- and short-term exposure effects of PM2.5, NO2, and O3 on all-cause, cardiovascular, and respiratory mortality in the Chinese population. Literature was identified through Web of Science, PubMed, Scopus, and China National Knowledge Infrastructure before August 28, 2023. Sub-group analyses were performed to quantify the impact of exposure assessment precisions and pollution levels on the estimated risk. Studies achieving merely city-level resolution and population exposure are classified as using traditional assessment methods, while those achieving sub-kilometer simulations and individual exposure are considered finer assessment methods. Using finer assessment methods, the RR (under 10 μg/m3 increment, with 95% confidence intervals) for long-term NO2 exposure to all-cause mortality was 1.13 (1.05-1.23), significantly higher (p-value = 0.01) than the traditional assessment result of 1.02 (1.00-1.03). Similar trends were observed for long-term PM2.5 and short-term NO2 exposure. A decrease in short-term PM2.5 levels led to an increase in the RR for all-cause and cardiovascular mortality, from 1.0035 (1.0016-1.0053) and 1.0051 (1.0021-1.0081) to 1.0055 (1.0035-1.0075) and 1.0086 (1.0061-1.0111), with weak between-group significance (p-value = 0.13 and 0.09), respectively. Based on the quantitative analysis and literature information, we summarized four key factors influencing exposure assessment precision under a conceptualized framework: pollution simulation resolution, subject granularity, micro-environment classification, and pollution levels. Our meta-analysis highlighted the urgency to improve pollution simulation resolution, and we provide insights for researchers, policy-makers and the public. By integrating the most up-to-date epidemiological research, our study has the potential to provide systematic evidence and motivation for environmental management.Copyright © 2024 Elsevier Ltd. All rights reserved.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 环境科学与生态学
小类 | 2 区 环境科学
最新[2023]版:
大类 | 2 区 环境科学与生态学
小类 | 2 区 环境科学
JCR分区:
出版当年[2022]版:
Q1 ENVIRONMENTAL SCIENCES
最新[2023]版:
Q1 ENVIRONMENTAL SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16399 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院