当前位置: 首页 > 详情页

Revisiting Virchow's triad: exploring the cellular and molecular alterations in cerebral venous congestion

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China [2]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China [3]Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China [4]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
出处:
ISSN:

关键词: Stroke CVT Virchow’s triad Cerebral venous congestion Endothelial injury

摘要:
Cerebral venous thrombosis (CVT) is a rare but serious condition that can lead to significant morbidity and mortality. Virchow's triad elucidates the role of blood hypercoagulability, blood flow dynamics, and endothelial damage in the pathogenesis of CVT. Cerebral venous congestion (CVC) increases the risk of cerebral venous sinus thrombosis and can lead to recurrent episodes and residual symptoms. However, the precise mechanism by which blood congestion leads to thrombosis remains unclear. Our objective was to investigate the cellular and molecular alterations linked to CVC through analysis of the pathological morphology of venous sinus endothelial cells and transcriptomic profiling.This study demonstrated a remarkable correlation between CVC and the phenotypic transformation of endothelial cells from an anticoagulant to a procoagulant state. The findings revealed that cerebral venous stasis results in tortuous dilatation of the venous sinuses, with slow blood flow and elevated pressure in the sinuses and damaged endothelial cells of the retroglenoid and internal jugular vein ligation (JVL) rat model. Mechanistically, analysis of transcriptomic results of cerebral venous sinus endothelial cells showed significant activation of platelet activation, complement and coagulation cascades pathway in the JVL rats. Furthermore, the expression of von Willebrand factor (vWF) and coagulation factor VIII (F8) in the complement and coagulation cascades and Fgg and F2 in the platelet activation was increased in the cerebral venous sinuses of JVL rats than in sham rats, suggesting that endothelial cell injury in the venous sinus induced by CVC has a prothrombotic effect. In addition, endothelial cell damage accelerates coagulation and promotes platelet activation. Significantly, the concentrations of vWF, F2 and F8 in venous sinus blood of patients with internal jugular vein stenosis were higher than in their peripheral blood.Collectively, our data suggest that CVC can induce endothelial cell damage, which then exhibits a procoagulant phenotype and ultimately increases the risk of CVT. This research contributes to our understanding of the pathophysiology of CVC associated with procoagulant factors and reexamines the components of Virchow's triad in the context of CVC.© 2024. The Author(s).

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学
最新[2023]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学
JCR分区:
出版当年[2022]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
通讯作者:
通讯机构: [1]Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China [2]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China [3]Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China [4]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院