机构:[1]Hebei North Univ, Clin Med Sch 1, Dept Nursing, Zhangjiakou, Peoples R China[2]Capital Med Univ, Xuanwu Hosp, Innovat Ctr Neurol Disorders, Natl Ctr Neurol Disorders, Beijing, Peoples R China首都医科大学宣武医院[3]Hebei North Univ, Affiliated Hosp 1, Dept Neurosurg, Zhangjiakou, Peoples R China[4]Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Neurosurg, Beijing, Peoples R China
Vascular dysfunction is implicated in the pathophysiology of Alzheimer's disease (AD). While sodium is essential for maintaining vascular function, its role in AD pathology remains unclear. We included 353 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI), assessing serum sodium levels, cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers, magnetic resonance imaging (MRI), and cognitive function. An independent sample (N = 471) with available CSF sodium-related proteins and AD biomarkers was also included. Associations between serum sodium levels and AD pathology, neurodegeneration, and cognition were evaluated using linear regression models. Spearman's correlation analyses assessed the relationships between CSF sodium-related proteins and AD biomarkers. Higher serum sodium levels were associated with increased AD pathology, reduced hippocampal volume, and greater cognitive decline (all p < 0.05). The relationship between serum sodium and amyloid PET was evident in several AD-susceptible brain regions, including the neocortex and limbic system. Individuals with high serum sodium exhibited higher tau pathology, lower hippocampal volume, and more severe cognitive decline per unit increase in amyloid PET compared to those with low serum sodium (all p < 0.05). Among the 14 CSF sodium-related proteins, which were intercorrelated, six were significantly correlated with CSF AD pathology and amyloid PET, while two were correlated with hippocampal volume and cognitive function, with sodium channel subunit beta-2 (SCN2B) and sodium channel subunit beta-3 (SCN3B) showing the strongest correlations. These findings underscore the crucial role of serum sodium in AD progression, highlighting a potential network of sodium dysregulation involved in AD pathology. Targeting sodium may offer a novel therapeutic approach to slowing AD progression, particularly by impeding the progression of amyloid-related downstream events.
基金:
China Brain Project, Grant/Award Number: 2021ZD0200407
第一作者机构:[1]Hebei North Univ, Clin Med Sch 1, Dept Nursing, Zhangjiakou, Peoples R China
共同第一作者:
通讯作者:
通讯机构:[4]Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Neurosurg, Beijing, Peoples R China[*1]Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Dept Neurosurg, 28 Fuxing Rd, Beijing 100853, Peoples R China
推荐引用方式(GB/T 7714):
Chen Yu-Han,Wang Zhi-Bo,Liu Xi-Peng,et al.Elevated serum sodium is linked to increased amyloid-dependent tau pathology, neurodegeneration, and cognitive impairment in Alzheimer's disease[J].JOURNAL OF NEUROCHEMISTRY.2024,doi:10.1111/jnc.16257.
APA:
Chen, Yu-Han,Wang, Zhi-Bo,Liu, Xi-Peng&Mao, Zhi-Qi.(2024).Elevated serum sodium is linked to increased amyloid-dependent tau pathology, neurodegeneration, and cognitive impairment in Alzheimer's disease.JOURNAL OF NEUROCHEMISTRY,,
MLA:
Chen, Yu-Han,et al."Elevated serum sodium is linked to increased amyloid-dependent tau pathology, neurodegeneration, and cognitive impairment in Alzheimer's disease".JOURNAL OF NEUROCHEMISTRY .(2024)