当前位置: 首页 > 详情页

RGX Ensemble Model for Advanced Prediction of Mortality Outcomes in Stroke Patients

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ 卓越:高起点新刊 ◇ ESCI

机构: [1]Faculty of Information Science and Technology, Beijing University of Technology, Beijing 100020, China. [2]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China. [3]The Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
出处:

摘要:
Objective: This paper aims to address the clinical challenge of predicting the outcomes of stroke patients and proposes a comprehensive model called RGX to help clinicians adopt more personalized treatment plans. Impact Statement: The comprehensive model is first proposed and applied to clinical datasets with missing data. The introduction of the Shapley additive explanations (SHAP) model to explain the impact of patient indicators on prognosis improves the accuracy of stroke patient mortality prediction. Introduction: At present, the prediction of stroke treatment outcomes faces many challenges, including the lack of models to quantify which clinical variables are closely related to patient survival. Methods: We developed a series of machine learning models to systematically predict the mortality of stroke patients. Additionally, by introducing the SHAP model, we revealed the contribution of risk factors to the prediction results. The performance of the models was evaluated using multiple metrics, including the area under the curve, accuracy, and specificity, to comprehensively measure the effectiveness and stability of the models. Results: The RGX model achieved an accuracy of 92.18% on the complete dataset, an improvement of 11.38% compared to that of the most advanced state-of-the-art model. Most importantly, the RGX model maintained excellent predictive ability even when faced with a dataset containing a large number of missing values, achieving an accuracy of 84.62%. Conclusion: In summary, the RGX ensemble model not only provides clinicians with a highly accurate predictive tool but also promotes the understanding of stroke patient survival prediction, laying a solid foundation for the development of precision medicine.Copyright © 2024 Jing Fang et al.

基金:
语种:
WOS:
PubmedID:
JCR分区:
出版当年[2022]版:
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Faculty of Information Science and Technology, Beijing University of Technology, Beijing 100020, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院