当前位置: 首页 > 详情页

NasalSeg: A Dataset for Automatic Segmentation of Nasal Cavity and Paranasal Sinuses from 3D CT Images

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Fudan Univ, Artificial Intelligence Innovat & Incubat Inst, Shanghai, Peoples R China [2]Shanghai Acad Artificial Intelligence Sci, Shanghai, Peoples R China [3]Fudan Univ, Huashan Hosp, PET Ctr, Dept Nucl Med, Shanghai, Peoples R China [4]Fudan Univ, Human Phenome Inst, Shanghai, Peoples R China [5]Capital Med Univ, Xuanwu Hosp, Dept Radiol & Nucl Med, Beijing, Peoples R China [6]Beijing Key Lab Magnet Resonance Imaging & Brain I, Beijing, Peoples R China [7]Minist Educ, Key Lab Neurodegenerat Dis, Beijing, Peoples R China [8]Shanghai Univ Tradit Chinese Med, Yueyang Hosp Integrat Chinese & Western Med, Dept Otolaryngol, Shanghai, Peoples R China [9]Fudan Univ, Huashan Hosp, Dept Radiol, Shanghai, Peoples R China
出处:
ISSN:

摘要:
Modern facial surgical planning and therapeutic strategies rely heavily on the precise segmentation of the nasal cavity and paranasal sinuses from computed tomography (CT) images for quantitative analysis. Nevertheless, manual segmentation is labor-intensive and prone to inconsistencies, highlighting the need for automatic segmentation methods. A significant challenge in this field is the lack of publicly available clinical datasets for research. To address this issue, we introduce NagalSeg, the first large-scale, publicly available dataset for nasal cavity and paranasal sinus segmentation. In comparison to existing nasal structure segmentation datasets, which are either private or small-scale, NagalSeg stands out as the first publicly accessible dataset. It provides an order of magnitude more labeled data, consisting of 130 3D CT scans with pixel-wise annotations of five anatomical structures: the left nasal cavity, right nasal cavity, nasopharynx, left maxillary sinus, and right maxillary sinus. The NagalSeg dataset serves as an open-access resource to facilitate the development and evaluation of segmentation algorithms and promote future in-depth research towards the clinical application of artificial intelligence methods.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
最新[2023]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
JCR分区:
出版当年[2022]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Fudan Univ, Artificial Intelligence Innovat & Incubat Inst, Shanghai, Peoples R China [2]Shanghai Acad Artificial Intelligence Sci, Shanghai, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Fudan Univ, Artificial Intelligence Innovat & Incubat Inst, Shanghai, Peoples R China [2]Shanghai Acad Artificial Intelligence Sci, Shanghai, Peoples R China [3]Fudan Univ, Huashan Hosp, PET Ctr, Dept Nucl Med, Shanghai, Peoples R China [4]Fudan Univ, Human Phenome Inst, Shanghai, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院