当前位置: 首页 > 详情页

Synchronization stability of epileptic brain network with higher-order interactions

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China [2]Yanshan Univ, Hebei Key Lab Informat Transmiss & Signal Proc, Qinhuangdao 066004, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Beijing Inst Funct Neurosurg, Beijing 100053, Peoples R China
出处:
ISSN:

摘要:
Generally, epilepsy is considered as abnormally enhanced neuronal excitability and synchronization. So far, previous studies on the synchronization of epileptic brain networks mainly focused on the synchronization strength, but the synchronization stability has not yet been explored as deserved. In this paper, we propose a novel idea to construct a hypergraph brain network (HGBN) based on phase synchronization. Furthermore, we apply the synchronization stability framework of the nonlinear coupled oscillation dynamic model (generalized Kuramoto model) to investigate the HGBNs of epilepsy patients. Specifically, the synchronization stability of the epileptic brain is quantified by calculating the eigenvalue spectrum of the higher-order Laplacian matrix in HGBN. Results show that synchronization stability decreased slightly in the early stages of seizure but increased significantly prior to seizure termination. This indicates that an emergency self-regulation mechanism of the brain may facilitate the termination of seizures. Moreover, the variation in synchronization stability during epileptic seizures may be induced by the topological changes of epileptogenic zones (EZs) in HGBN. Finally, we verify that the higher-order interactions improve the synchronization stability of HGBN. This study proves the validity of the synchronization stability framework with the nonlinear coupled oscillation dynamical model in HGBN, emphasizing the importance of higher-order interactions and the influence of EZs on the termination of epileptic seizures.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 数学
小类 | 2 区 物理:数学物理 3 区 应用数学
JCR分区:
出版当年[2023]版:
Q1 MATHEMATICS, APPLIED Q1 PHYSICS, MATHEMATICAL
最新[2023]版:
Q1 MATHEMATICS, APPLIED Q1 PHYSICS, MATHEMATICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Peoples R China [2]Yanshan Univ, Hebei Key Lab Informat Transmiss & Signal Proc, Qinhuangdao 066004, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16928 今日访问量:1 总访问量:903 更新日期:2025-03-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院