当前位置: 首页 > 详情页

Dual Enzyme-Mimic Popcorn-Shaped Copper-Erbium Nanoalloys for Combating Gram-Negative Pathogens and Promoting Wound Healing

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, New Cornerstone Sci Lab, CAS Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100190, Peoples R China [2]China Agr Univ, Coll Resources & Environm Sci, Beijing Key Lab Farmland Soil Pollut Prevent & Rem, Beijing 100193, Peoples R China [3]Hebei Acad Agr & Forestry Sci, Inst Biotechnol & Food Sci, Shijiazhuang 050051, Peoples R China [4]Capital Med Univ, Xuanwu Hosp, Dept Thorac Surg, Beijing 100053, Peoples R China [5]Chinese Acad Med Sci, Res Unit Nanosci & Technol, Beijing 100021, Peoples R China
出处:
ISSN:

关键词: nanoalloys catalytic reactive oxygen species(ROS) antibacterial wound healing

摘要:
Nanozymes with intrinsic ROS-generating abilities hold promise as next-generation antimicrobials; however, optimizing their enzyme-mimic efficiency remains a significant challenge. Here, we fabricated popcorn-shaped copper-erbium nanoalloys (CuEr NAs) via a simple one-pot coreduction method, resulting in stabilized nanoconstructs with dual enzyme-mimic activities. We described that CuEr NAs effectively inactivate Escherichia coli (E. coli) by generating intracellular ROS and depleting glutathione (GSH) through the release of copper ions. These ions induced oxidative stress by generating hydroxyl radicals (center dot OH) in acidic environments and oxidizing GSH to glutathione disulfide (GSSG), thereby amplifying ROS generation. CuEr NAs exhibited potent antibacterial activity and enhanced wound healing efficacy in an infected wound model by reducing the bacterial load, ameliorating inflammation, and promoting tissue remodeling. Histological analysis showed enhanced collagen deposition and re-epithelialization in wounds treated with CuEr NAs, highlighting their potential as a flexible platform for antimicrobial and regenerative biomedical applications. This study highlights CuEr NAs as a viable platform for antimicrobial applications and provides insights into the fabrication of multifunctional nanoantimicrobials.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 材料科学
小类 | 3 区 材料科学:综合 3 区 纳米科技
最新[2025]版:
大类 | 3 区 材料科学
小类 | 3 区 材料科学:综合 3 区 纳米科技
JCR分区:
出版当年[2023]版:
Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Q2 NANOSCIENCE & NANOTECHNOLOGY
最新[2023]版:
Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Q2 NANOSCIENCE & NANOTECHNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, New Cornerstone Sci Lab, CAS Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100190, Peoples R China [2]China Agr Univ, Coll Resources & Environm Sci, Beijing Key Lab Farmland Soil Pollut Prevent & Rem, Beijing 100193, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, New Cornerstone Sci Lab, CAS Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100190, Peoples R China [5]Chinese Acad Med Sci, Res Unit Nanosci & Technol, Beijing 100021, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17005 今日访问量:0 总访问量:906 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院