当前位置: 首页 > 详情页

p38 signaling in titanium particle-induced MMP-2 secretion and activation in differentiating MC3T3-E1 cells

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Department of Orthopedics, Second Affiliated Hospital of Soochow University, 1055, Sanxiang Road, Suzhou 215004, Jiangsu, People’s Republic of China
出处:
ISSN:

关键词: osteolysis wear particles osteoblast matrix metalloproteinases mitogen-activated protein kinase

摘要:
The periprosthetic osteolysis induced by wear particles contributes to aseptic loosening after joint arthroplasty. The molecular mechanism underlying osteolysis remains to be described. In this study, cultured MC3T3-E1 cells were incubated with titanium particles. We investigated the role of p38 mitogen-activated protein kinase in the expression of MMP-2 in response to wear particles. Our results demonstrated MC3T3-E1 cells exposed to titanium particles had significantly increased levels of MMP-2 and MT1-MMP mRNA, whereas the TIMP-2 mRNA level was unchanged. In MC3T3-E1 cells, the protein expression of MMP-2, MT1-MMP, and active p38 was also elevated after titanium particle exposure, as detected by Western blot and Biotrak activity analyses. Inhibition studies showed that the specific p38 inhibitor SB203580 completely abrogated the increase in MMP-2 and MT1-MMP production induced by the titanium particles. Moreover, our results revealed that conditioned mediastimulated osteoclast formation was related to the MMP-2 activity of osteoblasts that were challenged with Ti particles. This study demonstrated that p38 signaling is required for MMP-2 activity in osteoblasts under wear particle-induced conditions. MMP-2 could act as a catabolic element or a proinflammatory factor contributing to periprosthetic osteolysis. Therefore, the p38 pathway and MMP-2 may play a critical role in the development of aseptic loosening. (C) 2013 Wiley Periodicals, Inc.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2013]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:生物医学 3 区 材料科学:生物材料
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学 3 区 材料科学:生物材料
JCR分区:
出版当年[2012]版:
Q1 ENGINEERING, BIOMEDICAL Q2 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL Q3 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2012版] 出版当年五年平均 出版前一年[2011版] 出版后一年[2013版]

第一作者:
第一作者机构: [1]Department of Orthopedics, Second Affiliated Hospital of Soochow University, 1055, Sanxiang Road, Suzhou 215004, Jiangsu, People’s Republic of China
共同第一作者:
通讯作者:
通讯机构: [*]1055 Sanxiang Rd., Suzhou 215004, Jiangsu, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院