当前位置: 首页 > 详情页

Combination of freeze-thaw with detergents: A promising approach to the decellularization of porcine carotid arteries

| 导出 | |

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Xicheng District, Beijing, P.R. China
出处:
ISSN:

关键词: Tissue engineering decellularization extracellular matrix vascular grafts freeze-thaw

摘要:
BACKGROUND: A tissue engineering technique based on use of the extracellular matrix (ECM) as a scaffold shows great potential for preparing small-caliber vascular grafts. Decellularization protocols are still not standardized for bioengineering. The effects of freeze-thaw cycles used for decellularization are unknown. OBJECTIVE: To evaluate the effects of freeze-thaw cycles on porcine carotid arteries during decellularization and to develop a promising protocol for preparing ECM scaffolds. METHODS: Porcine carotid arteries were decellularized with freeze-thaw cycles followed by three different chemical protocols. Histological analysis, scanning electron microscopy, mechanical tests and pore size measurement were performed to assess their effects on the ECM. RESULTS: The composition, structure, and mechanical properties were not significantly changed after freeze-thaw cycles, with the exception of endothelial cells loss. Freeze-thaw led to a porous structure within arteries. The use of Triton X-100 followed by sodium dodecyl sulfate (SDS) resulted in ECM scaffolds with well-preserved composition, structure, and mechanical properties, as well as with adequate porosity. CONCLUSIONS: As the initial step for decellularization, freeze-thaw had little impact on arteries. Decellularized porcine carotid arteries, prepared using freeze-thaw cycles followed by treatment with Triton X-100 and SDS, may serve as a promising biological scaffold as a tissue-engineered vascular graft.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 4 区 工程技术
小类 | 4 区 工程:生物医学 4 区 材料科学:生物材料
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 工程:生物医学 4 区 材料科学:生物材料
JCR分区:
出版当年[2017]版:
Q4 MATERIALS SCIENCE, BIOMATERIALS Q4 ENGINEERING, BIOMEDICAL
最新[2024]版:
Q4 ENGINEERING, BIOMEDICAL Q4 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2024版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Xicheng District, Beijing, P.R. China
通讯作者:
通讯机构: [*1]Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing, 100053, P.R. China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17708 今日访问量:0 总访问量:943 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院