当前位置: 首页 > 详情页

Decreased resting-state brain signal complexity in patients with mild cognitive impairment and Alzheimer's disease: a multi-scale entropy analysis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ SSCI ◇ EI

机构: [1]Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, 100053, China [2]State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China [3]Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China [4]Department of Neurology, Mudanjiang Medical University Affiliated HongQi Hospital, Mudanjiang, 157000, China [5]School of Information Science and Engineering, Yanshan University, 438 Hebei Avenue, Qinhuangdao, 066004, China [6]The Key Laboratory of Software Engineering of Hebei Province, Yanshan University, 438 Hebei Avenue, Qinhuangdao, 066004, China [7]Shenzhen Longhua District Central Hospital, Shenzhen, 518110, China [8]Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China [9]Beijing Institute of Geriatrics, Beijing, 100053, China [10]National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China
出处:
ISSN:

摘要:
Multiscale entropy (MSE) analysis is a novel entropy-based analysis method for quantifying the complexity of dynamic neural signals and physiological systems across multiple temporal scales. This approach may assist in elucidating the pathophysiologic mechanisms of amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD). Using resting-state fNIRS imaging, we recorded spontaneous brain activity from 31 healthy controls (HC), 27 patients with aMCI, and 24 patients with AD. The quantitative analysis of MSE revealed that reduced brain signal complexity in AD patients in several networks, namely, the default, frontoparietal, ventral and dorsal attention networks. For the default and ventral attention networks, the MSE values also showed significant positive correlations with cognitive performances. These findings demonstrated that the MSE-based analysis method could serve as a novel tool for fNIRS study in characterizing and understanding the complexity of abnormal cortical signals in AD cohorts. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 2 区 医学
小类 | 2 区 光学 2 区 核医学 3 区 生化研究方法
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 生化研究方法 3 区 光学 3 区 核医学
JCR分区:
出版当年[2016]版:
Q1 OPTICS Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q2 BIOCHEMICAL RESEARCH METHODS
最新[2023]版:
Q2 BIOCHEMICAL RESEARCH METHODS Q2 OPTICS Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者机构: [1]Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, 100053, China
共同第一作者:
通讯作者:
通讯机构: [1]Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, 100053, China [2]State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China [3]Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China [8]Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China [9]Beijing Institute of Geriatrics, Beijing, 100053, China [10]National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17247 今日访问量:0 总访问量:925 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院