当前位置: 首页 > 详情页

Learning Effective Connectivity Network Structure from fMRI Data Based on Artificial Immune Algorithm

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software, College of Computer Science and Technology, Beijing University of Technology, Beijing, China, [2]Beijing Key Lab of MRI and Brain Informatics, Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China, [3]Department of Computer Science and Engineering, University at Buffalo, The State University of New York, Buffalo, United States of America
出处:
ISSN:

摘要:
Many approaches have been designed to extract brain effective connectivity from functional magnetic resonance imaging (fMRI) data. However, few of them can effectively identify the connectivity network structure due to different defects. In this paper, a new algorithm is developed to infer the effective connectivity between different brain regions by combining artificial immune algorithm (AIA) with the Bayes net method, named as AIAEC. In the proposed algorithm, a brain effective connectivity network is mapped onto an antibody, and four immune operators are employed to perform the optimization process of antibodies, including clonal selection operator, crossover operator, mutation operator and suppression operator, and finally gets an antibody with the highest K2 score as the solution. AIAEC is then tested on Smith's simulated datasets, and the effect of the different factors on AIAEC is evaluated, including the node number, session length, as well as the other potential confounding factors of the blood oxygen level dependent (BOLD) signal. It was revealed that, as contrast to other existing methods, AIAEC got the best performance on the majority of the datasets. It was also found that AIAEC could attain a relative better solution under the influence of many factors, although AIAEC was differently affected by the aforementioned factors. AIAEC is thus demonstrated to be an effective method for detecting the brain effective connectivity.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2015]版:
大类 | 3 区 生物
小类 | 3 区 综合性期刊
最新[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2014]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2014版] 出版当年五年平均 出版前一年[2013版] 出版后一年[2015版]

第一作者:
第一作者机构: [1]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software, College of Computer Science and Technology, Beijing University of Technology, Beijing, China,
通讯作者:
通讯机构: [2]Beijing Key Lab of MRI and Brain Informatics, Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China,
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院