当前位置: 首页 > 详情页

Experimental study on the construction of small three-dimensional tissue engineered grafts of electrospun poly-epsilon-caprolactone

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China [2]School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
出处:
ISSN:

摘要:
Studies on three-dimensional tissue engineered graft (3DTEG) have attracted great interest among researchers as they present a means to meet the pressing clinical demand for tissue engineering scaffolds. To explore the feasibility of 3DTEG, high porosity poly-epsilon-caprolactone (PCL) was obtained via the co-electrospinning of polyethylene glycol and PCL, and used to construct small-diameter poly-epsilon-caprolactone-lysine (PCL-LYS-H) scaffolds, whereby heparin was anchored to the scaffold surface by lysine groups. A variety of small-diameter 3DTEG models were constructed with different PCL layers and the mechanical properties of the resulting constructs were evaluated in order to select the best model for 3DTEGs. Bone marrow mononuclear cells were induced and differentiated to endothelial cells (ECs) and smooth muscle cells (SMCs). A 3DTEG (labeled '10-4 %') was successfully produced by the dynamic co-culture of ECs on the PCL-LYS-H scaffolds and SMCs on PCL. The fluorescently labeled cells on the 3DTEG were subsequently observed by laser confocal microscopy, which showed that the ECs and SMCs were embedded in the 3DTEG. Nitric oxide and endothelial nitric oxide synthase assays showed that the ECs behaved normally in the 3DTEG. This study consequently provides a new thread to produce small-diameter tissue engineered grafts, with excellent mechanical properties, that are perfusable to vasculature and functional cells.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2014]版:
大类 | 2 区 工程技术
小类 | 3 区 工程:生物医学 4 区 材料科学:生物材料
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学 4 区 材料科学:生物材料
JCR分区:
出版当年[2013]版:
Q2 ENGINEERING, BIOMEDICAL Q3 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL Q2 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2013版] 出版当年五年平均 出版前一年[2012版] 出版后一年[2014版]

第一作者:
第一作者机构: [1]Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
通讯作者:
通讯机构: [1]Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院