当前位置: 首页 > 详情页

Recognizing mild cognitive impairment based on network connectivity analysis of resting EEG with zero reference

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China [2]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, People’s Republic of China [3]Beijing Key Laboratory of Neuromodulation, Beijing 100053, People’s Republic of China [4]College of Bio-information, ChongQing University of Posts and Telecommunications, Chongqing 400065, People’s Republic of China [5]School of Microelectronics and Solid-State Electronics Physiology, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
出处:
ISSN:

关键词: mild cognitive impairment resting scalp EEG brain network EEG reference MCI recognition zero reference

摘要:
The diagnosis of mild cognitive impairment (MCI) is very helpful for early therapeutic interventions of Alzheimer's disease (AD). MCI has been proven to be correlated with disorders in multiple brain areas. In this paper, we used information from resting brain networks at different EEG frequency bands to reliably recognize MCI. Because EEG network analysis is influenced by the reference that is used, we also evaluate the effect of the reference choices on the resting scalp EEG network-based MCI differentiation. The conducted study reveals two aspects: (1) the network-based MCI differentiation is superior to the previously reported classification that uses coherence in the EEG; and (2) the used EEG reference influences the differentiation performance, and the zero approximation technique (reference electrode standardization technique, REST) can construct a more accurate scalp EEG network, which results in a higher differentiation accuracy for MCI. This study indicates that the resting scalp EEG-based network analysis could be valuable for MCI recognition in the future.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2013]版:
大类 | 4 区 生物
小类 | 4 区 生物物理 4 区 工程:生物医学 4 区 生理学
最新[2023]版:
大类 | 4 区 医学
小类 | 3 区 生物物理 3 区 生理学 4 区 工程:生物医学
JCR分区:
出版当年[2012]版:
Q3 ENGINEERING, BIOMEDICAL Q3 PHYSIOLOGY Q4 BIOPHYSICS
最新[2023]版:
Q3 ENGINEERING, BIOMEDICAL Q3 BIOPHYSICS Q3 PHYSIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2012版] 出版当年五年平均 出版前一年[2011版] 出版后一年[2013版]

第一作者:
第一作者机构: [1]Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院