机构:[1]Department of Neurosurgery, Cerebrovascular Diseases Research Institute, Xuan Wu Hospital, Capital Medical University, Beijing, China神经外科首都医科大学?脑血管病研究所首都医科大学宣武医院[2]Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA[3]Center for Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
Background and Purpose-Ischemic/reperfusion neuronal injury is characterized by accumulation of reactive oxygen species and oxidative DNA damage, which can trigger cell death by various signaling pathways. Two of these modes of death include poly(ADP-ribose) polymerase 1-mediated death or p53-and Bax-mediated apoptosis. The present study tested the hypothesis that peroxiredoxin 2 (PRX2) attenuates DNA damage-mediated prodeath signaling using in vitro and in vivo models of ischemic injury. The impact of this peroxide scavenger on p53-and poly(ADP-ribose) polymerase 1-mediated ischemic death is unknown. Methods-Neuronal PRX2 overexpression in primary cortical cultures and transgenic mice was combined with the poly(ADP-ribose) polymerase 1 inhibitor AG14361. AG14361 was also applied to p53 and Bax knockout cultures and mice and combined with the JNK inhibitor SP600125. DCF fluorescence, apurinic/apyrimidinic sites, single-strand breaks, Comet tail-length, nicotinamide adenine dinucleotide depletion, and viability were assessed in response to oxygen-glucose deprivation in cultures or transient focal cerebral ischemia in mice. Results-PRX2 attenuated reactive oxygen species, DNA damage, nicotinamide adenine dinucleotide depletion, and cell death. PRX2 knockdown exacerbated neuronal death after oxygen and glucose deprivation. PRX2 ameliorated poly(ADP-ribose) polymerase 1, p53, Bax, and caspase activation after ischemia. AG14361 reduced ischemic cell death in wild-type and p53 or Bax knockout cultures and animals but had no additional effect in PRX2-overexpressing mice. AG14361 and p53 knockout elicited additive effects with SP600125 on viability in vitro. Our findings support the existence of multiple parallel prodeath pathways with some crosstalk. Conclusions-The promising therapeutic candidate PRX2 can clamp upstream DNA damage and efficiently inhibit multiple prodeath cascades operating in both parallel and interactive fashions. (Stroke. 2013;44:1124-1134.)
基金:
National Institutes of Health/National Institute of Neurological Disorders and Stroke [NS043802, NS045048, NS036736, NS056118]; Chinese Natural Science Foundation [30870854]; Chinese Ministry of Education [NCET-08-0625]; National Basic Research Program (973 program) of China [2011CB707804]; Duquesne University
第一作者机构:[1]Department of Neurosurgery, Cerebrovascular Diseases Research Institute, Xuan Wu Hospital, Capital Medical University, Beijing, China[2]Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA
通讯作者:
通讯机构:[*1]Department of Neurosurgery, Xuan Wu Hospital Capital Medical University, Beijing 100053, China.
推荐引用方式(GB/T 7714):
Rehana K. Leak,Lili Zhang,Yumin Luo,et al.Peroxiredoxin 2 Battles Poly(ADP-Ribose) Polymerase 1-and p53-Dependent Prodeath Pathways After Ischemic Injury[J].STROKE.2013,44(4):1124-1134.doi:10.1161/STROKEAHA.111.680157.
APA:
Rehana K. Leak,Lili Zhang,Yumin Luo,Peiying Li,Haiping Zhao...&Xunming Ji.(2013).Peroxiredoxin 2 Battles Poly(ADP-Ribose) Polymerase 1-and p53-Dependent Prodeath Pathways After Ischemic Injury.STROKE,44,(4)
MLA:
Rehana K. Leak,et al."Peroxiredoxin 2 Battles Poly(ADP-Ribose) Polymerase 1-and p53-Dependent Prodeath Pathways After Ischemic Injury".STROKE 44..4(2013):1124-1134