当前位置: 首页 > 详情页

Transgenic Overexpression of Peroxiredoxin-2 Attenuates Ischemic Neuronal Injury Via Suppression of a Redox-Sensitive Pro-Death Signaling Pathway

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurosurgery and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China. [2]Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania. [3]Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania.
出处:
ISSN:

摘要:
Aims: Peroxiredoxins (PRXs) are a newly characterized family of peroxide scavenging enzymes that not only help maintain cellular redox homeostasis but also may directly engage in a variety of intracellular signaling pathways. PRX2 is a neuronal-specific PRX believed to participate in cerebral antioxidant responses in several neurodegenerative diseases. This study investigates the potential neuroprotective effect and the underlying mechanism of PRX2 in models of ischemic neuronal injury. Results: Transgenic mice overexpressing PRX2 showed reduced brain injury and improved neurological recovery up to 3 weeks after transient focal cerebral ischemia compared to wild-type littermates. In primary cultures of cortical neurons, transfection of PRX2 but not the loss-of-catalytic-site PRX2 mutant conferred neuroprotection against cell death induced by oxygen glucose deprivation. PRX2 exhibited potent pro-survival effects in ischemic neurons by maintaining thioredoxin (Trx) in its reduced state, thereby preventing oxidative stress-mediated activation of apoptosis signal-regulating kinase 1 (ASK1) and the downstream MKK/JNK pro-death signaling pathway. PRX2 failed to provide additional neuroprotection against ischemic injury in Trx- or ASK1-knockdown neuron cultures and in mice treated with a JNK inhibitor. Innovation: This study provides evidence that neuronal overexpression of PRX2 confers prolonged neuroprotection against ischemic/reperfusion brain injury. Moreover, the results suggest a signaling pathway by which PRX2 suppresses ischemia-induced neuronal apoptosis. Conclusions: Enhanced neuronal expression and activity of PRX2 protect against ischemic neuronal injury by directly modulating the redox-sensitive Trx-ASK1 signaling complex. Antioxid. Redox Signal. 17, 719-732.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2011]版:
大类 | 2 区 生物
小类 | 1 区 内分泌学与代谢 2 区 生化与分子生物学
最新[2023]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学 2 区 内分泌学与代谢
JCR分区:
出版当年[2010]版:
Q1 ENDOCRINOLOGY & METABOLISM Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q1 ENDOCRINOLOGY & METABOLISM Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2010版] 出版当年五年平均 出版前一年[2009版] 出版后一年[2011版]

第一作者:
第一作者机构: [1]Department of Neurosurgery and Cerebrovascular Diseases Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China. [2]Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
通讯作者:
通讯机构: [*1]Department of Neurosurgery, Cerebrovascular Diseases Research Institute, Capital Medical University, Beijing 100053, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院