当前位置: 首页 > 详情页

Decreased gyrification in major depressive disorder

| 导出 | |

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [a]Department of Mathematics, Zhejiang University, Hangzhou, [b]National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, [c]Department of Radiology, Xuanwu Hospital of Capital Medical University [d]Center for Social and Economic Behavior, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China
出处:
ISSN:

关键词: complexity connectivity cortical folding local gyrification index magnetic resonance imaging major depressive disorder

摘要:
Structural and functional abnormalities have been extensively reported in major depressive disorder, but possible changes in cortical folding have not yet been explored in this disorder. This study investigated this issue in major depressive disorder using the local gyrification index. High-resolution magnetic resonance imaging was performed in 18 patients with first-episode major depressive disorder and 18 age-matched and sex-matched healthy individuals. The local gyrification index was applied to detect brain areas with abnormal cortical folding in major depressive disorder. Compared with healthy participants, patients with major depressive disorder showed significantly decreased local gyrification index in the bilateral mid-posterior cingulate, insula, and orbital frontal cortices, the left anterior cingulate cortex, and the right temporal operculum. NeuroReport 20:378-380 (C) 2009 Wolters Kluwer Health | Lippincott Williams & Wilkins.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2008]版:
大类 | 3 区 医学
小类 | 4 区 神经科学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 神经科学
JCR分区:
出版当年[2007]版:
Q3 NEUROSCIENCES
最新[2023]版:
Q4 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2007版] 出版当年五年平均 出版前一年[2006版] 出版后一年[2008版]

第一作者:
第一作者机构: [a]Department of Mathematics, Zhejiang University, Hangzhou, [b]National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences,
共同第一作者:
通讯作者:
通讯机构: [*]National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16996 今日访问量:0 总访问量:905 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院