当前位置: 首页 > 详情页

Seizure prediction model based on method of common spatial patterns and support vector machine

文献详情

资源类型:
机构: [1]ShangRao Normal University, Jiangxi, China. [2]Department of Systems Science, Beijing Normal University, Beijing100875, China. [3]Beijing Institute of Functional Neurosurgery, Xuanwu Hospital , Captial Medical University, Beijing, China.
出处:

摘要:
Records of brain electrical activity from intracranial and scalp EEG of seven patients with different types of epilepsy are analyzed to predict the epileptic seizure onset. A method based on the CSP and SVM is introduced. This is an efficient method to predict epileptic seizures: from 52 pre-seizure signals, the seizure onsets in 23 of those are predicted. Through this method, we propose a seizure prediction model which gets an accuracy rate represented by predictions / seizures of 5/20-5/5 and a pseudo-prediction rate of 1.6-10.9 per hour. © 2012 IEEE.

基金:
语种:
第一作者:
第一作者机构: [1]ShangRao Normal University, Jiangxi, China.
通讯作者:
通讯机构: [2]Department of Systems Science, Beijing Normal University, Beijing100875, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院