当前位置: 首页 > 详情页

MiR-124 aggravates failing hearts by suppressing CD151-facilitated angiogenesis in heart

文献详情

资源类型:
机构: [1]Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China [2]Department of Cardiology, China-Japan Friendship Hospital, Beijing, China [3]Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China [4]Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma, OK, USA
出处:
ISSN:

关键词: Angiogenesis CD151 Heart failure Hypertrophy MiRNA

摘要:
Heart failure (HF) is the final common pathway of various cardiovascular diseases. Although it is well documented that reduction of cardiac angiogenesis contributes to the progression from adaptive cardiac hypertrophy to HF, the molecular mechanisms remain unknown. In the present study, we found that cardiac expression of miR- 124 was increased in patients and mice with HF. Recombinant adeno-associated virus (rAAV)-mediated miR-124 over-expression aggravated angiotensin II (Ang II) infusion-induced cardiac dysfunction and abnormal cardiac angiogenesis in mice. In vitro, transfection of miR-124 mimics significantly promoted apoptosis and reduced viability, migration, tube formation, and nitric oxide release in endothelial cells. In addition, CD151 was identified as a direct target of miR-124. Endothelial cell injury caused by CD151 silencing was mimicked by miR-124 over-expression. Re-expression of CD151 attenuated miR-124-mediated suppression of cardiac angiogenesis and cardiac dysfunction in Ang II-treated mice. Our observations suggest that miR-124 is an important negative regulator of cardiac angiogenesis and cardiac function, likely by suppressing the expression of CD151 in heart cells. Modulation of miR-124 levels may provide new strategies and targets for HF therapy. © Zhao et al.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 2 区 医学
小类 | 2 区 肿瘤学 3 区 细胞生物学
最新[2025]版:
第一作者:
第一作者机构: [1]Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
共同第一作者:
通讯作者:
通讯机构: [1]Division of Cardiology and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17069 今日访问量:0 总访问量:916 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院