当前位置: 首页 > 详情页

Shared Feature Learning Based on Prior Information for Glaucoma Diagnosis

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China [2]Capita Med Univ, Beijing Childrens Hosp, Natl Key Discipline Pediat, Minist Educ,Dept Ophthalmol, Beijing 100045, Peoples R China [3]Capital Med Univ, Beijing Tongren Hosp, Beijing 100045, Peoples R China
出处:
ISSN:

关键词: Shared Feature Learning Ensemble Classification Glaucoma Diagnosis Fundus Images Optical Coherence Tomography

摘要:
Glaucoma is an irreversible blinding eye disease and is difficult to diagnose at an early stage. In this paper, a novel computer-aided diagnosis algorithm was proposed to extract glaucoma features from fundus images and optical coherence tomography (OCT) reports. Based on the ophthalmologists' prior knowledge of the cup-to-disk ratio (CDR) in the fundus images and the thickness of optic nerve fiber layer (RNFLT) in the OCT reports, the proposed algorithm could extract a shared feature of the scale and shape of the target curve (CDR curve or RNFLT curve). This shared feature and features based on prior information constituted the feature space of the target curve, and comprehensively characterized the target curve. Furthermore, based on the feature space of the CDR curve and that of the RNFLT curve, an ensemble classification algorithm was proposed for glaucoma diagnosis. The proposed algorithms were further evaluated on a data set of fundus images and OCT reports. The test results demonstrated that the proposed algorithms achieved the state-of-the-art results with sensitivity of 100%, 97.75% and 91.01%, respectively, at the specificity of 75%, 90% and 99%.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 4 区 医学
小类 | 4 区 数学与计算生物学 4 区 核医学
最新[2023]版:
JCR分区:
出版当年[2017]版:
Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
通讯作者:
通讯机构: [2]Capita Med Univ, Beijing Childrens Hosp, Natl Key Discipline Pediat, Minist Educ,Dept Ophthalmol, Beijing 100045, Peoples R China [3]Capital Med Univ, Beijing Tongren Hosp, Beijing 100045, Peoples R China [*1]Capita Med Univ, Beijing Childrens Hosp, Natl Key Discipline Pediat, Minist Educ,Dept Ophthalmol, Beijing 100045, Peoples R China. [*2]Capital Med Univ, Beijing Tongren Hosp, Beijing 100045, Peoples R China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院