当前位置: 首页 > 详情页

Fast density-peaks clustering for registration-free pediatric white matter tract analysis

文献详情

资源类型:

收录情况: ◇ SCIE ◇ EI

机构: [1]DUT-RU International School of Information Science and Technology, Dalian University of Technology, Dalian, China [2]Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China [3]School of Mathematical Science, Dalian University of Technology, Dalian, China [4]Department of Radiology, Beijing Children’s Hospital, Captital Medical University, National Center for Children’s Health, China
出处:
ISSN:

关键词: Fast clustering White matter tracts DTI Pediatric development

摘要:
Clustering white matter (WM) tracts from diffusion tensor imaging (DTI) is primarily important for quantitative analysis on pediatric brain development. A recently developed algorithm, density peaks (DP) clustering, demonstrates great robustness to the complex structural variations of WM tracts without any prior templates. Nevertheless, the calculation of densities, the core step of DP, is time consuming especially when the number of WM fibers is huge. In this paper, we propose a fast algorithm that accelerates the density computation about 50 times over the original one. We convert the global calculation for the density as well as critical parameter in the process into local computations, and develop a binary tree structure to orderly store the neighbors for these local computations. Hence, the density computation turns out to be a direct access of the structure, rendering significantly computational saving. Performing experiments on synthetic point data and the JHU-DTI data set and comparing results of our fast DP algorithm and existing clustering methods, we can validate the efficiency and effectiveness of our fast DP algorithm. Finally, we demonstrate the application of the proposed algorithm on the analysis of pediatric WM tract development.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 3 区 工程技术
小类 | 3 区 计算机:人工智能 3 区 工程:生物医学 3 区 医学:信息
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 医学:信息 2 区 计算机:人工智能 2 区 工程:生物医学
JCR分区:
出版当年[2017]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q2 ENGINEERING, BIOMEDICAL Q2 MEDICAL INFORMATICS
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]DUT-RU International School of Information Science and Technology, Dalian University of Technology, Dalian, China [2]Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China
通讯作者:
通讯机构: [4]Department of Radiology, Beijing Children’s Hospital, Captital Medical University, National Center for Children’s Health, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院