当前位置: 首页 > 详情页

Rapid Detection of Brucella spp. and Elimination of Carryover Using Multiple Cross Displacement Amplification Coupled With Nanoparticles-Based Lateral Flow Biosensor.

文献详情

资源类型:
机构: [1]Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China, [2]Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medial University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Disease, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
出处:
ISSN:

摘要:
Brucella spp.is capable of causing disease in a range of animal hosts, and human brucellosis is regarded as a life-threating disease. A novel isothermal amplification technique, termed multiple cross displacement amplification (MCDA), was employed for detecting all Brucella species strains. Brucella-MCDA targets the Bscp31 gene (Brucella species-specific gene) to specifically design a set of 10 primers. The Brucella-MCDA can be coupled with nanoparticles-based lateral flow biosensor (LFB) for highly specific, simple, rapid, and visual detection of Brucella-specific amplicons. Using the protocol, a MCDA amplification followed by 2 min LFB resulted in visualization of DNA products trapped at the LFB test line. Various species of Gram-positive and Gram-negative strains are applied for optimizing and evaluating the target assay. Optimal MCDA condition is found to be 63°C for 40 min, with detection limits at 10 fg of templates in the pure cultures. The specificity of MCDA-LFB technique is of 100%, and no cross-reactions to non-Brucella strains are observed according to the specificity examination. Furthermore, dUTP and AUDG enzyme are added into the MCDA reaction mixtures, which are used for removing false-positive amplification generating from carryover contamination. Thus, 20 min for rapid template extraction followed by AUDG digestion (5 min), MCDA (40 min) combined with LFB detection (2 min) resulted in a total assay time of ~70 min. In sum, Brucella-MCDA-LFB technique is a rapid, simple, reliable, and sensitive method to detect all Brucella species strains, and can be used as potential screening tool for Brucella strains in various laboratories.

语种:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 2 区 医学
小类 | 2 区 微生物学 3 区 免疫学
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 微生物学 3 区 免疫学
第一作者:
第一作者机构: [1]Laboratory of Bacterial Infectious Disease of Experimental Center, Guizhou Provincial Center for Disease Control and Prevention, Guiyang, China,
通讯作者:
通讯机构: [2]Key Laboratory of Major Diseases in Children, Ministry of Education, National Key Discipline of Pediatrics (Capital Medial University), National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Disease, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, Beijing, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院