当前位置: 首页 > 详情页

Multi-modal multiple kernel learning for accurate identification of Tourette syndrome children

文献详情

资源类型:

收录情况: ◇ SCIE ◇ EI

机构: [1]Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China; [2]Chinese Acad Sci, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing, Peoples R China; [3]Univ Chinese Acad Sci, Beijing, Peoples R China; [4]Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing, Peoples R China; [5]Capital Med Univ, Beijing Childrens Hosp, Dept Radiol, Beijing, Peoples R China; [6]Capital Med Univ, Beijing Childrens Hosp, Dept Neurol, Beijing, Peoples R China; [7]Univ N Carolina, Dept Radiol, Chapel Hill, NC USA; [8]Univ N Carolina, BRIC, Chapel Hill, NC USA
出处:
ISSN:

关键词: Tourette syndrome DTI TBSS SVM MKL

摘要:
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder characterized by the presence of multiple motor and vocal tics. To date, TS diagnosis remains somewhat limited and studies using advanced diagnostic methods are of great importance. In this paper, we introduce an automatic classification framework for accurate identification of TS children based on multi-modal and multi-type features, which is robust and easy to implement. We present in detail the feature extraction, feature selection, and classifier training methods. In addition, in order to exploit complementary information revealed by different feature modalities, we integrate multi-modal image features using multiple kernel learning (MKL). The performance of our framework has been validated in classifying 44 TS children and 48 age-and gender-matched healthy children. When combining features using MKL, the classification accuracy reached 94.24% using nested cross-validation. Most discriminative brain regions were mostly located in the cortico-basal ganglia, frontal cortico-cortical circuits, which are thought to be highly related to TS pathology. These results show that our method is reliable for early TS diagnosis, and promising for prognosis and treatment outcome.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:人工智能 2 区 工程:电子与电气
最新[2023]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:人工智能 1 区 工程:电子与电气
JCR分区:
出版当年[2015]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
最新[2023]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者机构: [1]Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China; [2]Chinese Acad Sci, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing, Peoples R China; [3]Univ Chinese Acad Sci, Beijing, Peoples R China;
通讯作者:
通讯机构: [1]Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing, Peoples R China; [2]Chinese Acad Sci, Inst Automat, Res Ctr Brain Inspired Intelligence, Beijing, Peoples R China; [3]Univ Chinese Acad Sci, Beijing, Peoples R China; [4]Chinese Acad Sci, Ctr Excellence Brain Sci & Intelligence Technol, Beijing, Peoples R China; [5]Capital Med Univ, Beijing Childrens Hosp, Dept Radiol, Beijing, Peoples R China;
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院