Coronary slow flow (CSF) in coronary angiography (CAG) is a well-recognized clinical entity. Previous studies have suggested that microvascular abnormalities and endothelial dysfunction are responsible for CSF. Accordingly, we hypothesized that the CSF phenomenon is a form of atherosclerosis including both small vessels and epicardial coronary arteries. The echo-tracking (ET) technique is a non-invasive detection method for early prediction of arterial atherosclerosis. Therefore, we investigated carotid elasticity with the ET technique in patients with CSF. Fifty patients with CSF and 50 patients with normal coronary artery blood flow, as determined by CAG, with a similar distribution of risk factors were recruited. The stiffness parameter (beta), pressure- strain elastic modulus (E-p), arterial compliance (AC), augmentation index (AIx) and local pulse-wave velocity (PWV) were determined at the level of the bilateral common carotid artery (CCA) with using the ET technique. Levels of serum high-sensitivity C-reactive protein (hs-HSCRP) were determined for the two groups. beta, E-p and PWV were significantly higher in the CSF group than in the control group (beta: 11.4 +/- 3.76 vs. 9.22 +/- 3.28, p < 0.01; E-p: 153.44 +/- 47.85 vs. 126.40 +/- 43.32, p < 0.01; PWV: 7.26 +/- 1.10 vs. 6.55 +/- 1.02, p < 0.01), but AC was lower in the CSF group than in the control group (0.62 +/- 0.20 vs. 0.74 +/- 0.24, p < 0.01). The elasticity parameters of the bilateral common carotid artery did not significantly differ. The level of hs-HSCRP was correlated positively with beta (r=50.306, p=0.015), E-p (r=0.358, p= 0.005) and PWV (r = 0.306, p = 0.015), but negatively with AC (r = -0.236, p 5 0.049). In conclusion, the ET technique is a simple practical method for evaluating carotid artery elasticity, and there is a significant correlation between carotid artery stiffness and level of hs-HSCRP in patients with CSF. (C) 2015 World Federation for Ultrasound in Medicine & Biology.
语种:
外文
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2014]版:
大类|3 区医学
小类|2 区声学3 区核医学
最新[2023]版:
大类|3 区医学
小类|3 区声学3 区核医学
JCR分区:
出版当年[2013]版:
Q1ACOUSTICSQ2RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGINGQ2ACOUSTICS
第一作者机构:[1]Capital Med Univ, Beijing Tiantan Hosp, Dept Ultrasonog, Beijing 100050, Peoples R China;
通讯作者:
通讯机构:[2]Capital Med Univ, Beijing Tiantan Hosp, Dept Cardiol, Beijing 100050, Peoples R China;[3]Capital Med Univ, Beijing Tiantan Hosp, Dept Cardiol, 6 Tiantanxili St, Beijing 100050, Peoples R China
推荐引用方式(GB/T 7714):
Yang Song,Wang De-zhao,Zhang Hong-xia,et al.ECHO-TRACKING TECHNOLOGY ASSESSMENT OF CAROTID ARTERY STIFFNESS IN PATIENTS WITH CORONARY SLOW FLOW[J].ULTRASOUND IN MEDICINE AND BIOLOGY.2015,41(1):72-76.doi:10.1016/j.ultrasmedbio.2014.08.015.
APA:
Yang, Song,Wang, De-zhao,Zhang, Hong-xia,He, Wen&Chen, Bu-xing.(2015).ECHO-TRACKING TECHNOLOGY ASSESSMENT OF CAROTID ARTERY STIFFNESS IN PATIENTS WITH CORONARY SLOW FLOW.ULTRASOUND IN MEDICINE AND BIOLOGY,41,(1)
MLA:
Yang, Song,et al."ECHO-TRACKING TECHNOLOGY ASSESSMENT OF CAROTID ARTERY STIFFNESS IN PATIENTS WITH CORONARY SLOW FLOW".ULTRASOUND IN MEDICINE AND BIOLOGY 41..1(2015):72-76