当前位置: 首页 > 详情页

A Rat Model of Hemidystonia Induced by 3-Nitropropionic Acid

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China; [2]Capital Med Univ, Beijing Neurosurg Inst, Beijing, Peoples R China
出处:
ISSN:

摘要:
Objective: Secondary dystonia commonly presents as hemidystonia and is often refractory to current treatments. We aimed to establish an inducible rat model of hemidystonia utilizing 3-nitropropionic acid (3-NP) and to determine the pathophysiology of this model. Methods: Two different doses of 3-NP were stereotactically administered into the ipsilateral caudate putamen (CPu) of Wistar rats. Behavioral changes and alterations in the neurotransmitter levels in the basal ganglia were analyzed. We also performed an electromyogram, 7.0-T magnetic resonance imaging and transmission electron microscopy examination to determine the pathophysiology of the model. Results: In the CPu region, 3-NP produced mitochondrial cristae rupture, axonal degeneration, increased excitatory synaptic vesicles and necrosis. The extracellular concentrations of excitatory amino acids increased, whereas the inhibitory amino acids decreased in the CPu. Furthermore, an imbalance of neurotransmitters was found in other regions of the basal ganglia with the exception of the external globus pallidus. This study demonstrated that 3-NP administration results in CPu damage, and combined with a neurotransmitter imbalance in the basal ganglia, it produces specific neurobehavioral changes in rats. Right limb (contralateral side of CPu lesion) and trunk dystonic postures, shortened step length and ipsiversive dystonic posturing were observed in these rats. Furthermore, EMG recordings confirmed that co-contraction of the agonist and antagonist muscles could be seen for several seconds in right limbs. Conclusions: Stereotactic injection of 3-NP into the ipsilateral CPu of rats established an inducible model for hemidystonia. This effect might result from an imbalance of neurotransmitter levels, which induce dysfunctional activity of the basal ganglia mainly via the cortico-striato-GPi direct pathway. Symptoms in this model were present for 1 week. Activation of the cortico-striato-GPe indirect pathway and rebalance of neurotransmitters may lead to recovery. This rat model may be a suitable tool used to understand and further investigate the pathophysiology of dystonia.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2012]版:
大类 | 2 区 生物
小类 | 2 区 生物学
最新[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2011]版:
Q1 BIOLOGY
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2011版] 出版当年五年平均 出版前一年[2010版] 出版后一年[2012版]

第一作者:
第一作者机构: [1]Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China;
通讯作者:
通讯机构: [1]Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, Beijing, Peoples R China; [2]Capital Med Univ, Beijing Neurosurg Inst, Beijing, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院