当前位置: 首页 > 详情页

Robust unsupervised segmentation of infarct lesion from diffusion tensor MR images using multiscale statistical classification and partial volume voxel reclassification

文献详情

资源类型:
机构: [a]Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China [b]Department of Neuroradiology, Beijing Tiantan Hospital, Beijing 100050, China [c]Medical Imaging Processing Group, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Beijing 100080, China
出处:
ISSN:

关键词: Diffusion anisotropy DT-MRI Infarction Segmentation Statistical classification

摘要:
Manual region tracing method for segmentation of infarction lesions in images from diffusion tensor magnetic resonance imaging (DT-MRI) is usually used in clinical works, but it is time consuming. A new unsupervised method has been developed, which is a multistage procedure, involving image preprocessing, calculation of tensor field and measurement of diffusion anisotropy, segmentation of infarction volume based on adaptive multiscale statistical classification (MSSC), and partial volume voxel reclassification (PVVR). The method accounts for random noise, intensity overlapping, partial volume effect (PVE), and intensity shading artifacts, which always appear in DT-MR images. The proposed method was applied to 20 patients with clinically diagnosed brain infarction by DT-MRI scans. The accuracy and reproducibility in terms of identifying the infarction lesion have been confirmed by clinical experts. This automatic segmentation method is promising not only in detecting the location and the size of infarction lesion in stroke patient but also in quantitatively analyzing diffusion anisotropy of lesion to guide clinical diagnoses and therapy. © 2004 Elsevier Inc. All rights reserved.

基金:
语种:
中科院(CAS)分区:
出版当年[2003]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 神经成像 2 区 神经科学 2 区 核医学
第一作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院