当前位置: 首页 > 详情页

Penehyclidine hydrochloride preconditioning provides pulmonary and systemic protection in a rat model of lung ischaemia reperfusion injury

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [a]Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, PR China [b]Department of Anesthesiology, The Fourth Hospital of Changsha, The Digestive Surgery Institute of Changsha, Changsha, PR China
出处:
ISSN:

关键词: Ischaemia reperfusion Preconditioning Pulmonary Systemic

摘要:
Penehyclidine hydrochloride (PHC) is a new anticholinergic agent that provides protective effects in experimental models of heart and brain ischaemia as well as reperfusion (I/R) injury. In this study, we tested the hypothesis that PHC can alleviate lung ischaemia-reperfusion injury and improve pulmonary and systemic function in rats. PHC was administered intravenously at various doses (d = 0.1, 0.3, 1, 3 mg/kg) to I/R rats. We used six indicators, including lung function, histologic examination, pulmonary oedema, oxidative stress, inflammatory responses, and apoptosis staining to quantify the pulmonary and systemic protective effects of PHC. Haematoxylin and eosin staining was used for pulmonary histologic examination. The expression of Toll-like receptor (TLR) 4, phospho-inhibitor of NF-kappa B (p-I kappa B) and nuclear factor-kappa B (NF-kappa B) was analysed using western blotting. ELISA was conducted to detect inflammatory mediators. Oxidative stress markers as well as myeloperoxidase (MPO) were determined using an assay kit. PHC preconditioning (with concentrations ranging from 0.3 mg/kg to 3 mg/kg 30 min before the onset of I/R) significantly reduced lung histopathological changes, down regulated TLR4, p-I kappa B and NF-kappa B expression, and decreased inflammatory mediators as well as the total number of leukocytes and neutrophils in bronchoalveolar lavage (BAL) fluid and plasma. The lung tissue contents of reactive oxygen species (ROS), malondialdehyde (MDA), and MPO as well as pulmonary oedema formation decreased, while SOD (superoxide dismutase) activity was significantly upregulated. PHC preconditioning (with concentrations ranging from 1 mg/kg to 3 mg/kg) significantly improved the lung function and attenuated the apoptotic rate. The probable mechanism for this finding is the inhibition of proinflammatory mediators via the suppression of reactive oxygen species production and the TLR4/NF-kappa B signalling pathway.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 3 区 医学
小类 | 3 区 药学
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 药学
JCR分区:
出版当年[2016]版:
Q2 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者机构: [a]Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, PR China
通讯作者:
通讯机构: [a]Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, PR China [*1]Department of Anesthesiology, Beijing Anzhen Hospital of Capital Medical University, 2 Anzhen Road, Chao yang, Beijing 100029, PR China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17010 今日访问量:0 总访问量:909 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院