当前位置: 首页 > 详情页

Bootstrap-based Feature Selection to Balance Model Discrimination and Predictor Significance: A Study of Stroke Prediction in Atrial Fibrillation.

| 认领 | 导出 |

文献详情

资源类型:
机构: [1]IBM Research - China, Beijing, China. [2]IBM T.J. Watson Research Center, New York, USA. [3]Department of Cardiology, Beijing Anzhen Hospital, Beijing, China.
出处:
ISSN:

摘要:
Atrial fibrillation (AF) is a common cardiac arrhythmias, which increases the risk and severity of ischemic stroke. For predicting ischemic stroke in AF patients, a risk prediction model that can achieve both good model discrimination (e.g., A UC) and statistical significance ofpredictors is required in real clinical practices. In this paper, we propose a new bootstrap-based wrapper (Boots-wrapper) method of feature selection, and apply this method on Chinese Atrial Fibrillation Registry data to develop 1-year stroke prediction models in AF. The proposed method can heuristically search a subset of features to maximize the discrimination of the prediction model and minimize the penalty for the non-significant features. To achieve robust feature selection, we perform bootstrap sampling to get a more reliable estimate of the variation and significance statistics. The experimental results show that Boots-wrapper can balance model discrimination and statistical significance offeatures for developing AF stroke prediction models.

语种:
PubmedID:
第一作者:
第一作者机构: [1]IBM Research - China, Beijing, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院