当前位置: 首页 > 详情页

Hydrogen sulfide alleviates myocardial collagen remodeling in association with inhibition of TGF-β/Smad signaling pathway in spontaneously hypertensive rats.

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing, China. [2]Department of Pediatrics, Peking University First Hospital, Beijing, China. [3]Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing, China. [4]Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China. [5]Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.
出处:
ISSN:

摘要:
The study was designed to explore the role and possible mechanisms of hydrogen sulfide (H2S) in the regulation of myocardial collagen remodeling in spontaneously hypertensive rats (SHRs). We treated nine-week-old male SHRs and age- and sex-matched Wistar-Kyoto rats (WKYs) with NaHS (90 μmol/kg(-1)·day(-1)) for 9 wks. At 18 wks, plasma H2S, tail arterial pressure, morphology of the heart, myocardial ultrastructure and collagen volume fraction (CVF), myocardial expressions of collagen I and III protein and procollagen I and III mRNA, transforming growth factor-β1 (TGF-β1), TGF-β type I receptor (TβR-I), type II receptor (TβR-II), p-Smad2 and 3, matrix metalloproteinase (MMP)-13 and tissue inhibitors of MMP (TIMP)-1 proteins were determined. TGF-β1-stimulated cultured cardiac fibroblasts (CFs) were used to further study the mechanisms. The results showed that compared with WKYs, SHRs showed a reduced plasma H2S, elevated tail artery pressure and increased myocardial collagen, TGF-β1, TβR-II, p-Smad2 and p-Smad3 expressions. However, NaHS markedly decreased tail artery pressure and inhibited myocardial collagen, TGF-β1, TβR-II, p-Smad2 and p-Smad3 protein expressions, but H2S had no effect on the expressions of MMP-13 and TIMP-1. Hydralazine reduced blood pressure but had no effect on myocardial collagen, MMP-13 and TIMP-1 expressions and TGF-β1/Smad signaling pathway. H2S prevented activation of the TGF-β1/Smad signaling pathway and abnormal collagen synthesis in CFs. In conclusion, the results suggested that H2S could prevent myocardial collagen remodeling in SHR. The mechanism might be associated with inhibition of collagen synthesis via TGF-β1/Smad signaling pathway.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2014]版:
大类 | 2 区 医学
小类 | 2 区 医学:研究与实验 3 区 生化与分子生物学 3 区 细胞生物学
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 生化与分子生物学 2 区 细胞生物学 2 区 医学:研究与实验
JCR分区:
出版当年[2013]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q2 CELL BIOLOGY
最新[2023]版:
Q1 CELL BIOLOGY Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q1 MEDICINE, RESEARCH & EXPERIMENTAL Q2 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2013版] 出版当年五年平均 出版前一年[2012版] 出版后一年[2014版]

第一作者:
第一作者机构: [1]Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院