当前位置: 首页 > 详情页

Dual effects of different concentrations of alpha-synuclein on the neurotoxicity of 6-hydroxydopamine in SH-SY5Y cells

| 认领 | 导出 |

文献详情

资源类型:

收录情况: ◇ 统计源期刊 ◇ 北大核心 ◇ CSCD-C

机构: [1]Department of Neurobiology, Institute of Geriatrics of Beijing, Xuanwu Hospital of the Capital University of Medical Sciences, Key Laboratory for Neurodegenerative Disease of Ministry of Education, China
出处:
ISSN:

摘要:
α-synuclein (α-SN) has been postulated to play a pivotal role in the pathogenesis of Parkinson's disease (PD). However, the physiological functions of α-SN and the molecular and cellular mechanisms underlying neuronal loss remain unclear. Recent studies suggest that α-SN plays dual roles of neuroprotection and neurotoxicity depending on its concentration or level of expression. In the present study, we explored the potential mechanisms for α-SN to regulate neuronal survival. α-SN at different concentrations (0.1 to 40 mumol/L) with or without 50 mumol/L 6-hydroxydopamine (6-OHDA) were added into the culture medium of the SH-SY5Y dopaminergic neural cells. The cell viability was measured on post-treatment day 1, 2 and 3. The activity of proteasome inhibited by α-SN was tested by a proteasome activity assay system after 2 h of α-SN treatment. According to the activity of proteasome inhibited by α-SN, the correlative dose of proteasome inhibitor--lactacystin (10 nmol/L to 5 mumol/L) with or without 50 mumol/L 6-OHDA were used and the cell viability was assayed on post-treatment day 1, 2 and 3. The results showed that α-SN played dual roles of neuroprotection and neurotoxicity depending on its concentration. At low concentration (0.1 to 5 mumol/L), α-SN promoted the proliferation and protected neurons against the neurotoxicity of 6-OHDA; in contrast, at high concentration (10 to 40 mumol/L), α-SN possessed cytotoxicity. The results of lactacystin treatment implied that the dual roles of α-SN were related to the moderate and strong inhibition of proteasome activity. The MEK1/2 specific inhibitor PD98059 completely blocked the protection of both α-SN and lactacystin, suggesting that MAPK pathway might be involved in the neuroprotection of α-SN.

语种:
第一作者:
第一作者机构: [1]Department of Neurobiology, Institute of Geriatrics of Beijing, Xuanwu Hospital of the Capital University of Medical Sciences, Key Laboratory for Neurodegenerative Disease of Ministry of Education, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院