当前位置: 首页 > 详情页

Cornel iridoid glycoside improves cognitive impairment induced by chronic cerebral hypoperfusion via activating PI3K/Akt/GSK-3β/CREB pathway in rats.

文献详情

资源类型:
机构: [1]Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Beijing, China
出处:
ISSN:

摘要:
Chronic cerebral hypoperfusion is an important risk factor for vascular dementia (VaD) and other brain dysfunctions, for which there are currently no effective medications available. In the present study, we investigated the potential therapeutic effects of cornel iridoid glycoside (CIG) on VaD in rats modeled by permanent bilateral common carotid artery ligation (2-vessel occlusion, 2VO). The object recognition test (ORT) and Morris water maze (MWM) test were conducted to evaluate the learning and memory function. Western blot analysis and immunohistochemical staining were used to detect the expression of related proteins. Results showed that intragastric administration of CIG (30, 60, and 120 mg/kg) for 3 months significantly increased the discrimination index in ORT and decreased the escape latency in MWM test, ameliorating the learning and memory deficit in 2VO rats. Further data indicated that CIG increased the expression of neurotrophic factors (NGF and BDNF) and their receptors (TrkA and TrkB), glutamate receptor subunits (NMDAR1 and GluR2) in the cerebral cortex and hippocampus of 2VO rats. In addition, CIG elevated the expression of PI3K subunits p110α and p85, further upregulated the phosphorylation of Akt, GSK3β-ser9 and CREB in the cerebral cortex and hippocampus at 3 months after 2VO surgery. Collectively, CIG treatment improved learning and memory deficit induced by chronic cerebral hypoperfusion via increasing neurotrophic factors thus protecting glutamate receptors and activating PI3K/Akt/GSK3β/CREB signaling pathway in rats. These results suggest that CIG may be beneficial to VaD therapy. Copyright © 2019 Elsevier B.V. All rights reserved.

语种:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 3 区 医学
小类 | 2 区 行为科学 3 区 神经科学
最新[2023]版:
大类 | 3 区 心理学
小类 | 4 区 行为科学 4 区 神经科学
第一作者:
第一作者机构: [1]Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Beijing, China
通讯作者:
通讯机构: [1]Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing Institute for Brain Disorders, Beijing Engineering Research Center for Nerve System Drugs, Beijing, China [*1]Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院