当前位置: 首页 > 详情页

Information Integration and Mesoscopic Cortical Connectivity during Propofol Anesthesia.

文献详情

资源类型:
机构: [1]Institute of Electrical Engineering, Yanshan University, Qinhuangdao, P.R. China [2]Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China [3]Department of Anesthesia, Waikato Hospital, Hamilton, New Zealand [4]State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
出处:
ISSN:

摘要:
Coupling of neuronal oscillations between brain regions is correlated with higher level brain activityPermutation cross mutual information can be used to evaluate information integration in the electroencephalogram during anesthesia. Using electrocorticography in subjects anesthetized with propofol, the genuine permutation cross mutual information demonstrated that, with loss of consciousness, there was a loss of efficient global information transmission and increased local functional segregation in the cortical network BACKGROUND:: The neurophysiologic mechanisms of propofol-induced loss of consciousness have been studied in detail at the macro (scalp electroencephalogram) and micro (spiking or local field potential) scales. However, the changes in information integration and cortical connectivity during propofol anesthesia at the mesoscopic level (the cortical scale) are less clear. The authors analyzed electrocorticogram data recorded from surgical patients during propofol-induced unconsciousness (n = 9). A new information measure, genuine permutation cross mutual information, was used to analyze how electrocorticogram cross-electrode coupling changed with electrode-distances in different brain areas (within the frontal, parietal, and temporal regions, as well as between the temporal and parietal regions). The changes in cortical networks during anesthesia-at nodal and global levels-were investigated using clustering coefficient, path length, and nodal efficiency measures. In all cortical regions, and in both wakeful and unconscious states (early and late), the genuine permutation cross mutual information and the percentage of genuine connections decreased with increasing distance, especially up to about 3 cm. The nodal cortical network metrics (the nodal clustering coefficients and nodal efficiency) decreased from wakefulness to unconscious state in the cortical regions we analyzed. In contrast, the global cortical network metrics slightly increased in the early unconscious state (the time span from loss of consciousness to 200 s after loss of consciousness), as compared with wakefulness (normalized average clustering coefficient: 1.05 ± 0.01 vs. 1.06 ± 0.03, P = 0.037; normalized average path length: 1.02 ± 0.01 vs. 1.04 ± 0.01, P = 0.021). The genuine permutation cross mutual information reflected propofol-induced coupling changes measured at a cortical scale. Loss of consciousness was associated with a redistribution of the pattern of information integration; losing efficient global information transmission capacity but increasing local functional segregation in the cortical network.

语种:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 2 区 医学
小类 | 1 区 麻醉学
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 麻醉学
第一作者:
第一作者机构: [1]Institute of Electrical Engineering, Yanshan University, Qinhuangdao, P.R. China
通讯作者:
通讯机构: [4]State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China [*1]State Key Laboratory of Cognitive Neuroscience and Learning and International Data Group/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, P.R. China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院