当前位置: 首页 > 详情页

Tumor Necrosis Factor-alpha (TNF-α) Enhances miR-155-Mediated Endothelial Senescence by Targeting Sirtuin1 (SIRT1).

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland). [2]Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China (mainland).
出处:
ISSN:

摘要:
BACKGROUND Sirtuin1 (SIRT1) participates in a wide variety of cellular processes, but the molecular mechanism remains largely unknown. miR-155 is an element of the inflammatory signaling pathway in atherosclerosis. Therefore, we tested the hypothesis that TNF-alpha stimulates miR-155 to target SIRT1 and thereby regulates endothelial senescence, and we also explored the function of miR-155 as a regulator of cardiovascular diseases. MATERIAL AND METHODS TNF-alpha was used to stimulate human umbilical vein endothelial cells (HUVECs), after which protein and gene expression were assessed via Western blotting and RT-qPCR. miR-155 targeting of SIRT1 was confirmed via luciferase reporter assays, while MTT and senescence-associated ß-galactosidase (SA-ß-gal) assays were used for quantifying cellular proliferation and senescence. RESULTS We found that miR-155 was upregulated in response to TNF-alpha treatment, in addition to inducing marked changes in SIRT1/FoxO-1/p21 pathway protein level. When we overexpressed miR-155 mimics, SIRT1 was markedly reduced, whereas miR-155 inhibition had the opposite effect in TNF-alpha-treated cells. We additionally confirmed that miR-155 was able to directly bind to SIRT1 3'-UTR, and that inhibition of miR-155 reduced the ability of TNF-alpha to induce senescence in HUVECs, thereby leading to their enhanced proliferation. Simvastatin was associated with suppression of miR-155 expression in HUVECs following TNF-alpha treatment, and with a corresponding reduction in TNF-alpha-induced senescence, whereas miR-155 overexpression had the opposite effect. CONCLUSIONS Our findings suggest that TNF-alpha upregulates miR-155, which then targets SIRT1, suppressing its expression and driving HUVEC apoptosis. Simvastatin disrupted this senescence mechanism via the miR-155/SIRT1/FoxO-1/p21 pathway signaling. Hence, miR-155 is a possible therapeutic approach to endothelial senescence in the development of cardiovascular diseases.

语种:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
JCR分区:
出版当年[2017]版:
Q3 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q3 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland). [2]Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China (mainland).
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16399 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院