当前位置: 首页 > 详情页

Identifying Mild Cognitive Impairment with Random Forest by Integrating Multiple MRI Morphological Metrics.

| 导出 | |

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [a]School of Biomedical Engineering, Capital Medical University, Beijing, China [b]Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application,Capital Medical University, Beijing, China [c]Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China [d]School of Chinese Medicine, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: Deformation-based morphometry mild cognitive impairment random forest surface-based morphometry voxel-based morphometry

摘要:
Mild cognitive impairment (MCI) exhibits a high risk of progression to Alzheimer's disease (AD), and it is commonly deemed as the precursor of AD. It is important to find effective and robust ways for the early diagnosis of MCI. In this paper, a random forest-based method combining multiple morphological metrics was proposed to identify MCI from normal controls (NC). Voxel-based morphometry, deformation-based morphometry, and surface-based morphometry were utilized to extract morphological metrics such as gray matter volume, Jacobian determinant value, cortical thickness, gyrification index, sulcus depth, and fractal dimension. An initial discovery dataset (56 MCI/55 NC) from the ADNI were used to construct classification models and the performances were testified with 10-fold cross validation. To test the generalization of the proposed method, two extra validation datasets including longitudinal ADNI data (30 MCI/16 NC) and collected data from Xuanwu Hospital (27 MCI/32 NC) were employed respectively to evaluate the performance. No matter whether testing was done on the discovery dataset or the extra validation datasets, the accuracies were about 80% with the combined morphological metrics, which were significantly superior to single metric (accuracy: 45% ∼76%) and also displayed good generalization across datasets. Additionally, gyrification index and cortical thickness derived from surface-based morphometry outperformed other features in MCI identification, suggesting they were some key morphological biomarkers for early MCI diagnosis. Combining the multiple morphological metrics together resulted in a significantly better and reliable identification model, which may be helpful to assist in the clinical diagnosis of MCI.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 医学
小类 | 3 区 神经科学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
JCR分区:
出版当年[2018]版:
Q2 NEUROSCIENCES
最新[2023]版:
Q2 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [a]School of Biomedical Engineering, Capital Medical University, Beijing, China [b]Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application,Capital Medical University, Beijing, China
共同第一作者:
通讯作者:
通讯机构: [a]School of Biomedical Engineering, Capital Medical University, Beijing, China [b]Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application,Capital Medical University, Beijing, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院