当前位置: 首页 > 详情页

Oxycodone suppresses the lipopolysaccharide-induced neuroinflammation by downregulating nuclear factor-κB in hippocampal astrocytes of Sprague-Dawley rats.

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [a]Department of Anesthesiology, Xuanwu Hospital,Beijing, China [b]Department of Human Anatomy and Histology, Capital Medical University, Beijing, China
出处:
ISSN:

摘要:
Neuroinflammation is a common pathogenic mechanism in several neurodegenerative diseases, and glial cells are the primary inflammatory mediators of the central nervous system (CNS). Acute neuronal injury, infection, and chronic neurodegeneration may induce astrocyte activation, which is a response characterized by hyperproliferation and release of multiple inflammatory signaling factors. The opioid analgesic oxycodone has demonstrated anti-inflammatory efficacy in peripheral tissue, but its effects on the CNS have not been studied. We evaluated the inhibitory effects of oxycodone on astrocyte activation and proinflammatory mediator production in response to lipopolysaccharide (LPS). Our results showed that oxycodone (5-20 μg/ml) dose-dependently inhibited the LPS-induced astrocytosis, as measured by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide and bromodeoxyuridine assays, as well as the overexpression of glial fibrillary acidic protein, which are two hallmarks of reactive astrogliosis in neurodegenerative diseases. Oxycodone also decreased both the mRNA and protein expression levels of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β. Besides, oxycodone increased the expression of the nuclear factor kappa-B (NF-κB) endogenous inhibitor IκB-α, and blocked NF-κB translocation to the nucleus. The anti-inflammatory efficacy of oxycodone on rat astrocytes increased with pretreatment duration. These results suggest that oxycodone can suppress neuroinflammation by inhibiting NF-κB signaling in astrocytes. Targeting the astrocytic NF-κB-mediated inflammatory response may be an effective therapeutic strategy against diseases involving neuroinflammatory damage.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 4 区 医学
小类 | 4 区 神经科学
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 神经科学
JCR分区:
出版当年[2018]版:
Q4 NEUROSCIENCES
最新[2023]版:
Q4 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [a]Department of Anesthesiology, Xuanwu Hospital,Beijing, China
通讯作者:
通讯机构: [a]Department of Anesthesiology, Xuanwu Hospital,Beijing, China [*1]Department of Anesthesiology, Xuanwu Hospital, Beijing, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院