当前位置: 首页 > 详情页

基于脑电信号预发作数据段选取的癫痫发作预测

| 导出 |

文献详情

资源类型:

收录情况: ◇ 统计源期刊 ◇ 北大核心 ◇ CSCD-C ◇ EI

机构: [1]北京理工大学信息与电子学院 [2]首都医科大学宣武医院
出处:
ISSN:

关键词: 癫痫发作预测 头皮脑电图(sEEG) 患者特异性 特征挑选 预发作数据段选取

摘要:
为了提高癫痫发作预测的准确性,提出针对病患个体进行癫痫发作预测的算法,包括特征提取、预发作数据段选取、特征挑选与导联挑选.算法采用半重叠的2 s窗对每个导联分别提取时频特征和空域特征.从发作前期选择与发作间期相比具有最大线性可分性的连续10 min数据作为预发作数据段的有效正样本.算法通过弹性网进行特征挑选,再基于所选特征通过贪婪算法选择有效导联,将有效导联的有效特征输入到分类器中.将该算法在MIT公共头皮脑电数据库和宣武医院收集的数据集上进行测试,测试结果为:在MIT数据库上的击中率为95.76%,假阳性率为0.107 3 h-1;在宣武医院数据集上的击中率为97.80%,假阳性率为0.045 3 h-1.结果表明,该算法具有较高的击中率和较低的假阳性率.

基金:
语种:
第一作者:
第一作者机构: [1]北京理工大学信息与电子学院
通讯作者:
通讯机构: [1]北京理工大学信息与电子学院
推荐引用方式(GB/T 7714):

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院