当前位置: 首页 > 详情页

Analysis of microRNA expression in cerebral ischemia/reperfusion after mild therapeutic hypothermia treatment in rats.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China [2]China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China [3]Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
出处:
ISSN:

摘要:
This study aimed to explore the molecular mechanism of mild hypothermia in in the treatment of cerebral ischemia, microRNA (miRNA) microarrays and bioinformatics analysis were employed to examine the miRNA expression profiles of rats with mild therapeutic hypothermia after middle cerebral artery occlusion (MCAO). MCAO was induced in Male Sprague-Dawley rats. Mild hypothermia treatment began from the onset of ischemia and maintained for 3 hours. miRNA expressions following focal cerebral ischemia and mild hypothermia treatment were profiled using microarray technology. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the functions of the target genes in mild therapeutic hypothermia after MCAO. 60 min before MCAO, mimics and inhibitor of miR-291b were injected into the right lateral ventricle respectively, then the infarct volume and neuronal apoptosis were analyzed. Six upregulated miRNAs and 6 downregulated miRNAs were detected 4 hours after mild therapeutic hypothermia, and after 24 hours, 41 and 10 miRNAs were upregulated and downregulated, respectively. The target genes of the differentially expressed genes were mainly related with multicellular organism development and the mucin type O-glycan biosynthesis pathway was the most enriched KEGG pathway. Among the differentially expressed miRNAs, miR-291b was selected to assess the effects of mild therapeutic hypothermia in MCAO rats. At 24 hours after mild therapeutic hypothermia, miR-291b overexpression was proved to exhibit neuroprotective effects. The results showed that miRNAs might play a pivotal role in mild therapeutic hypothermia in cerebral ischemia/reperfusion injury. Further understanding of the mechanism and function of miRNAs would help to illuminate the mechanism of mild therapeutic hypothermia in cerebral ischemia/reperfusion injury. 2021 Annals of Translational Medicine. All rights reserved.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版
大类 | 3 区 医学
小类 | 3 区 医学:研究与实验 3 区 肿瘤学
最新[2023]版:
JCR分区:
出版当年[2019]版:
Q2 ONCOLOGY Q2 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Department of Neurosurgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
通讯作者:
通讯机构: [2]China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China [3]Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China [*1]Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing 100053, China. [*2]China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院