当前位置: 首页 > 详情页

Deep Attention and Graphical Neural Network for Multiple Sclerosis Lesion Segmentation From MR Imaging Sequences

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]School of Software, Northwestern Polytechnical University, Xi’an 710072, China [2]School of Computer Science, the University of Sydney, Darlington, NSW 2006, Australia [3]Xuanwu Hospital, Capital Medical University, Beijing 100053, China
出处:
ISSN:

关键词: Lesions Correlation Image segmentation Multiple sclerosis Feature extraction Convolution Bioinformatics Attention mechanism graph mechanism multiple sclerosis segmentation spatial correlations and global context learning

摘要:
The segmentation of multiple sclerosis (MS) lesions from MR imaging sequences remains a challenging task, due to the characteristics of variant shapes, scattered distributions and unknown numbers of lesions. However, the current automated MS segmentation methods with deep learning models face the challenges of (1) capturing the scattered lesions in multiple regions and (2) delineating the global contour of variant lesions. To address these challenges, in this paper, we propose a novel attention and graph-driven network (DAG-Net), which incorporates (1) the spatial correlations for embracing the lesions in distant regions and (2) the global context for better representing lesions of variant features in a unified architecture. Firstly, the novel local attention coherence mechanism is designed to construct dynamic and expansible graphs for the spatial correlations between pixels and their proximities. Secondly, the proposed spatial-channel attention module enhances features to optimize the global contour delineation, by aggregating relevant features. Moreover, with the dynamic graphs, the learning process of the DAG-Net is interpretable, which in turns support the reliability of segmentation results. Extensive experiments were conducted on a public ISBI2015 dataset and an in-house dataset in comparison to state-of-the-art methods, based on geometrical and clinical metrics. The experimental results validate the effectiveness of proposed DAG-Net on segmenting variant and scatted lesions in multiple regions.

基金:

基金编号: 62001386

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 工程技术
小类 | 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:信息系统 2 区 计算机:跨学科应用
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 医学:信息
JCR分区:
出版当年[2020]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]School of Software, Northwestern Polytechnical University, Xi’an 710072, China [2]School of Computer Science, the University of Sydney, Darlington, NSW 2006, Australia
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院